
NAVAL POSTGRADUATE SCHOOL
Monterey, California

DISSERTATION

Approved for public release; distribution is unlimited

HOLISTIC FRAMEWORK FOR ESTABLISHING
INTEROPERABILITY OF HETEROGENEOUS

SOFTWARE DEVELOPMENT TOOLS

by

Joseph F. Puett III

June 2003

 Dissertation Supervisor: Luqi

THIS PAGE INTENTIONALLY LEFT BLANK

i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
June 2003

3. REPORT TYPE AND DATES COVERED
Dissertation

4. TITLE AND SUBTITLE: Holistic Framework For Establishing Interoperability
of Heterogeneous Software Development Tools

6. AUTHOR(S) Joseph F. Puett III

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Space and Naval Warfare Systems Center- San Diego
San Diego, CA 92152-5031

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
This dissertation presents a Holistic Framework for Software Engineering (HFSE) that

establishes collaborative mechanisms by which existing heterogeneous software development
tools and models will interoperate. Past research has been conducted with the aim of
developing or improving individual aspects of software development; however, this research
focuses on establishing a holistic approach over the entire development effort where unrealized
synergies and dependencies between all of the tools' artifacts can be visualized and leveraged to
produce both improvements in process and product.
 The HFSE is both a conceptual framework and a software engineering process model
(with tool support) where the dependencies between software development artifacts are
identified, quantified, tracked, and deployed throughout all artifacts via middleware. Central to
the approach is the integration of Quality Function Deployment (QFD) into the Relational
Hypergraph (RH) Model of Software Evolution. This integration allows for the dependencies
between artifacts to be automatically tracked throughout the hypergraph representation of the
development effort, thus assisting the software engineer to isolate subgraphs as needed.

15. NUMBER OF
PAGES

370

14. SUBJECT TERMS Software Evolution, Interoperability, Integrated Software Development
Environments, Heterogeneous Software Systems, Quality Function Deployment

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

ii

THIS PAGE INTENTIONALLY LEFT BLANK

iii

Approved for public release; distribution is unlimited

HOLISTIC FRAMEWORK FOR ESTABLISHING INTEROPERABILITY OF
HETEROGENEOUS SOFTWARE DEVELOPMENT TOOLS

Joseph F. Puett III

Lieutenant Colonel, United States Army
B.S., United States Military Academy, 1982

M.S., California Institute of Technology, 1992
M.B.A., Long Island University, 1994

Submitted in partial fulfillment of the

requirements for the degree of

DOCTOR OF PHILOSOPHY IN SOFTWARE ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
June 2003

Author:
Joseph F. Puett III

Approved by:

Luqi
Professor of Computer Science
Dissertation Supervisor

Craig W. Rasmussen James B. Michael
Associate Professor of Mathematics Associate Professor of
 Computer Science

Man-Tak Shing Nelson Ludlow
Associate Professor of Mobilisa, Incorporated
Computer Science

Approved by:

Peter Denning, Chair, Department of Computer Science

Approved by:
 Carson K. Eoyang, Associate Provost for Academic Affairs

iv

THIS PAGE INTENTIONALLY LEFT BLANK

v

ABSTRACT

This dissertation presents a Holistic Framework for Software Engineering (HFSE)

that establishes collaborative mechanisms by which existing heterogeneous software

development tools and models will interoperate. Past research has been conducted with

the aim of developing or improving individual aspects of software development;

however, this research focuses on establishing a holistic approach over the entire

development effort where unrealized synergies and dependencies between all of the tools'

artifacts can be visualized and leveraged to produce both improvements in process and

product.

 The HFSE is both a conceptual framework and a software engineering process

model (with tool support) where the dependencies between software development

artifacts are identified, quantified, tracked, and deployed throughout all artifacts via

middleware. Central to the approach is the integration of Quality Function Deployment

(QFD) into the Relational Hypergraph (RH) Model of Software Evolution. This

integration allows for the dependencies between artifacts to be automatically tracked

throughout the hypergraph representation of the development effort, thus assisting the

software engineer to isolate subgraphs as needed.

vi

THIS PAGE INTENTIONALLY LEFT BLANK

vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. MOTIVATION ..1

1. Software Understandability ..1
a. Produce Tools to Promote Understandability of Customer

Desires and Legacy Software Development Efforts.................2
b. Produce a Framework that Promotes Understandability

of Customer Desires and Legacy Software Development
Efforts ..3

2. Holistic Development ...3
3. Requirements Engineering..5
4. Coherent Development ..7
5. Software Safety...8
6. Solving these Problems with the Holistic Framework For

Software Engineering (HFSE) ..9
B. RESEARCH HYPOTHESIS AND METHODOLOGY10

1. Research Hypothesis..10
2. Research Methodology ..10

a. Development of a Software Tool Artifact Ontology...............11
b. Integration of QFD and the Evolution Model11
c. Creation of a Federation Interoperability Object Model.......12
d. Prototype the HFSE by Extending CASES............................12
e. Application of the HFSE to a Software Development

Scenario...13
C. OVERVIEW OF THE HOLISTIC FRAMEWORK FOR

SOFTWARE EVOLUTION ...13
1. Software Evolution...14
2. Object Model ..16
3. The Ideal HFSE..17

a. Generic ..17
b. Real Tools..17
c. Process Independent ...18
d. Domain Independent...18
e. Extensible ..18
f. Improve Time to Market ...19
g. Decrease Cost of Development ...19
h. Improved Quality...19
i. Easy to Use and Enhances Productivity.................................19

4. Scope of the Dissertation Research ..19
D. CONTRIBUTIONS PROVIDED BY THIS DISSERTATION.................19

1. Accomplishment of the Research Goal ..19
a. Construction of the HFSE is Feasible19
b. HFSE Artifacts Can be Described Mathematically...............20

viii

c. The HFSE Increases Software Tool Interoperability............20
2. Other Original and Unique Contributions20

a. Develop a Software Development Tool Ontology
Construction Methodology ...20

b. Construct a Pilot Software Development Tool Ontology.......20
c. Adapt QFD Methodology to Deploy Software

Dependencies other than Quality ...20
d. Apply OOMI to the Software Development Tool Domain.....21
e. Use the HFSE to Provide Perspective Views of the

Development Effort ...21
E. ORGANIZATION OF THE DISSERTATION ..21

II. PREVIOUS WORK...25
A. CHAPTER ORGANIZATION...25
B. FOUNDATION WORK ..25

1. Approaches to Software Evolution...25
a. Inevitability of Evolution ..30
b. Holistic Approach ...31
c. Assumptions and Uncertainty...31
d. Validation Against Assumptions ..31
e. Views of Evolution ..32

2. The Relational Hypergraph and CASES...32
a. Brief History of the Hypergraph ..32
b. The Relational Hypergraph (RH) Software Evolution

Model ...33
3. Quality Function Deployment (QFD)...36

a. QFD History and Cited Benefits ..36
b. Software Quality Function Deployment (SQFD)38
c. The Voice of the Customer ...41
d. Steps in the QFD Process ...45
e. Adapting QFD to Software Development...............................49
f. Establishing Correlations ...55
g. QFD in Large Complex Software Systems.............................57
h. The Role of QFD in this Research ...59

4. Methods for Establishing Interoperability of Software
Development Models and Tools..60

5. Application of Ontologies for Interoperability................................63
a. Ontology Overview and Example ...63
b. Constructing an Ontology...69
c. Ontology Definition and Capture ...71
d. UML as an Ontology Description Language73

C. RELATED WORK ..74
1. Software Development Tool Suites: The Rational Approach........74

a. Summary..74
b. Relationship to the Dissertation Topic77
c. Weaknesses..78

2. Rational Unified Process (RUP) ...78

ix

a. Summary..79
b. Applicability or Relationship of Work to the Dissertation

Topic ..81
c. Weaknesses..81

3. Integrated Software Development Environments82
a. ISDEs and ISPEs..82
b. Portable Common Tool Environment (PCTE)83
c. Arcadia ..84
d. Weaknesses..84

4. Software Engineering Ontologies ..85
a. Software Engineering Body of Knowledge86
b. DARPA Agent Markup Language ...89

5. The Uses of QFD for Software..90
D. CHAPTER SUMMARY..92

III. TOWARDS A SOFTWARE DEVELOPMENT TOOL ONTOLOGY................93
A. CHAPTER OVERVIEW ..93
B. METHODOLOGY FOR BUILDING THE ONTOLOGY........................93

1. Step 1 -- Purpose and Scope of the Ontology95
2. Step 2 -- Feature Modeling..95
3. Step 3 – Establishing Commonalities ...98
4. Step 4 – Tool Ontologies ..99
5. Step 5 - UML Representation of the Domain100
6. Step 6 -- Documentation ..101

C. DOMAIN ANALYSIS AND FEATURE MODELS101
1. Rational Requisite®Pro...102
2. SEATools ..107

D. FEDERATION ONTOLOGY ..112
E. TOOL ONTOLOGIES..115
F. ONTOLOGY INTER-RELATIONSHIPS ..118
G. CHAPTER SUMMARY..119

IV. INTEGRATING QUALITY FUNCTION DEPLOYMENT INTO THE
RELATIONAL HYPERGRAPH MODEL OF SOFTWARE EVOLUTION ...121
A. RELATIONAL HYPERGRAPH SOFTWARE EVOLUTION

MODEL ..121
1. Overview of the Relational Hypergraph Software Evolution

Model...121
2. Important Definitions in the RH Model...121
3. Embedding QFD within the Relational Hypergraph Software

Evolution Model ...124
a. Project Schema..124
b. QFD Dependency..124

B. THE MATHEMATICS OF DEPENDENCY DEPLOYMENT..............125
1. Deployment Equations ..125
2. Downstream Dependency Deployment Example128
3. Upstream Deployment of Dependency...130
4. Other Means of Deploying Dependencies: Constant Range131

x

5. Other Mathematical Checks ...135
a. Superfluous Artifact Analysis...135
b. Coverage Analysis ...136

C. MAKING USE OF DEPLOYED DEPENDENCIES138
1. Dependency Threshold ..138
2. Component Trace...140

D. ESTABLISHING DEPENDENCY VALUES ...141
1. Scales of Measurement ..142

a. Nominal ...142
b. Ordinal...142
c. Interval ..143
d. Ratio...143

2. QFD Dependency Valuation ...144
a. Absolute Importance (Interval Valuation)...........................144
b. Relative Importance (Ratio Valuation)145
c. Ordinal Importance (Ordinal Valuation).............................146
d. Comparison of Valuation Schemes146

3. The Analytic Hierarchy Process (AHP)...147
a. The Normalized Principal Eigenvector of Priority Values..147
b. Consistency Checking of the Comparison Matrix149
c. Hierarchical Clustering to Account for Non-

Independence ..149
4. Subjectivity and Sensitivity Analysis ...151

E. CHAPTER SUMMARY..152

V. APPLICATION OF THE OBJECT-ORIENTED METHODOLOGY FOR
INTEROPERABILITY TO THE DOMAIN OF SOFTWARE
DEVELOPMENT TOOLS ...153
A. CHAPTER OVERVIEW ..153
B. BUILDING A FEDERATION INTEROPERABILITY OBJECT

MODEL ..153
1. Motivation for the FIOM ..153
2. FIOM Construction Methodology..155

C. EXAMPLE OF CONSTRUCTING THE FIOM......................................157
D. EXTENDING THE FIOM TO ACCOUNT FOR ADDITIONAL

TOOLS..162
1. Addition of Rational Rose® Example ..162
2. Addition of Pseudo-Code Example...163

E. CREATING THE TOOL ADD-ONS...166
F. LIMITATIONS OF THE OOMI APPROACH TO PROVDING

INTEROPERABITIY WITHIN THE HFSE..166
1. The Intra-lingual Concept...167
2. Scalability..167
3. Ontologies and FIOMs are Difficult to Build................................167

G. SUMMARY ..168

VI. THE HOLISTIC FRAMEWORK FOR SOFTWARE ENGINEERING
(HFSE) ..169

xi

A. THE HFSE..169
B. APPLYING THE HFSE TO ESTABLISH INTEROPERABILITY

OF SOFTWARE ENGINEERING PROCESS MODELS169
1. Identifying The Project Schema ...169
2. Establishing the Tool Ontology ..169
3. Constructing the FIOM...170
4. Establishing Communication Mechanisms....................................170
5. Identifying Dependencies and Artifact Correlations....................170

B. EXTENSIONS..170
1. Extending the FIOM with Additional Software Development

Tools ..170
2. Extending the HFSE ..171
3. Adding Dependencies...171

C. FOCUSED DEVELOPMENT USING "SLICES"...................................171
1. Dependency Threshold ..171
2. Component Tracing ...171
3. Potential Application of Risk-Induced Slices172

a. Greatest Risk Slices...172
b. Change Knock-on Effects...172
c. Safety Certification ...173

D. CHAPTER SUMMARY..173

VII. EXTENSIONS TO THE COMPUTER AIDED SOFTWARE EVOLUTION
SYSTEM (CASES)...175
A. CHAPTER OVERVIEW ..175
B. GRAPHICALLY DEFINING A SOFTWARE DEVELOPMENT

PROJECT SCHEMA ..176
1. The Project Schema in CASES version 1.1176
2. The Project Schema in CASES version 2.0177

C. EMBEDDING QFD INTO CASES..180
1. QFD Dependencies...181
2. Component Data Import ...182
3. QFD Matrices ...184

D. ENGINEERING VIEWS OF QFD DEPENDENCIES (SLICES OF
THE RH MODEL)...185
1. Dependency Threshold View ..186
2. Component Trace View...188

E. CHAPTER SUMMARY..192

VIII. VALIDATION..193
A. APPROACH TO VALIDATION ...193

1. Definitions...193
a. Theoretical Feasibility ..193
b. Interoperability..194
c. Interoperability Improvement...195

2. Experimental Design..196
a. Overview ..196
b. Static Group Comparison ...196

xii

3. Sizing the Dissertation Investigation and Risk Management197
a. Limited Number of Software Development Tools Analyzed197
b. Superficial Exploration for Counter-examples198
c. Partial Implementation of Example Tools...........................198
d. No Validation against a real-world system198
e. Early Implementation ...198

B. CONDUCT OF THE EXPERIMENT ...199
1. “Hello World” Toy Software Scenario ..199
2. “CARA Infusion Pump” Software Scenario205

C. RESULTS AND CONFIRMING EVIDENCE OF THE
HYPOTHESIS..208
1. “Hello World” Results...208

a. Questions Posed ..208
b. Non-HFSE Results: Hello World...209
c. HFSE Results: Hello World ...209

2. “CARA Infusion Pump” Software Scenario216
a. Questions Posed ..216
b. Non-HFSE Results: CARA ..217
c. HFSE Results: CARA...217

3. Evidence Confirming the Dissertation Hypothesis223
D. INTERNAL AND EXTERNAL VALIDITY AND EXPERIMENTAL

IMPLICATIONS ...224
1. Internal and External Validity ...224
2. Sources of Internal Invalidity ...224

a. History ...224
b. Maturation...225
c. Testing ...225
d. Instrumentation...226
e. Statistical Regression ..226
f. Selection Biases...227
g. Experimental Mortality...227
h. Selection-Maturation Interaction...228

3. Sources of External Invalidity ..228
a. Interaction of Testing and X...228
b. Interaction of Selection and X..228
c. Reactive Arrangements ...229
d. Multiple-X Interference ..229

4. Summary of Experimental Validity ...230
E. CHAPTER SUMMARY..232

IX. CONCLUSIONS ..233
A. REVIEW OF THE DISSERTATION CONTRIBUTIONS.....................233

1. Accomplishment of the Research Goal ..233
a. Construction of the HFSE is Feasible233
b. HFSE Artifacts Can be Described Mathematically.............233
c. The HFSE Increases Software Tool Interoperability..........233

2. Other Original and Unique Contributions233

xiii

a. Development of a Software Development Tool Ontology
Construction Methodology ...233

b. Construct a Pilot Software Development Tool Ontology.....234
c. Use the QFD Methodology to Deploy Software

Dependencies other than Quality ...234
d. Apply OOMI to the Software Development Tool Domain...234
e. Use the HFSE to Provide Perspective Views of the

Development Effort ...234
2. Potential Long-Term Benefits to the Field of Software

Engineering...235
a. Improved Software Development Processes.........................235
b. Improved Software Products ..235
c. Recognition of Unrealized Software Development

Dependencies...235
B. RESEARCH ISSUES ADDRESSED ...235

1. Software QFD...236
a. Questions ...236
b. Answer ...236

2. Automation of Requirement Prioritization236
a. Question...236
b. Answer ...236

3. Automation of Dependency...236
a. Question...236
b. Answer ...237

4. QFD Dependencies...237
a. Question...237
b. Answer ...237

5. QFD and the RH Model ..238
a. Questions ...238
b. Answer ...238

6. Monitoring Artifacts..238
a. Questions ...238
b. Answer ...239

7. HFSE Communications ...239
a. Question...239
b. Answer ...239

8. HFSE and APIs ..239
a. Questions ...239
b. Answer ...239

9. Missing and Ambiguous Data ...240
a. Question...240
b. Answer ...240

10. HFSE Extensibility...240
a. Questions ...240
b. Answer ...240

11. Process Dependencies and the HFSE ...240

xiv

a. Questions ...240
b. Answer ...240

12. The HFSE and GUI Consoles ...241
a. Questions ...241
b. Answer ...241

C. RECOMMENDATIONS FOR FUTURE RESEARCH...........................241
1. Follow-on Hypotheses..242
2. Comprehensive Model Validation..242
3. Additional Future Research Issues...243

a. HFSE Providing a Common Tool View...............................243
b. Tool Replacement in the HFSE..243
c. Tool Data Semantics ...243
d. Specification Tradeoff Elasticity ..244
e. HFSE Data Representation..244
f. Interoperability Tradeoffs...244
g. Data Standards and the HFSE...244
h. Dependency Paths and Constraints......................................244
i. Method Tailoring ..245
j. Scalability of the HFSE Approach.......................................245
k. Sensitivity Analysis..245

D. CONCLUDING REMARKS ..245

GLOSSARY..247

APPENDIX A: CASES USE CASES ..261
A. INTRODUCTION..261
B. CASES TOP-LEVEL USE CASES..262
C. USE CASE 1.0: IMPORT TRANSLATORS FROM BABEL263
D. USE CASE 2.0: SOFTWARE ENGINEER SPECIFIES SOFTWRE

PROCESS ...263
1. Use Case 2.1: Load Existing Software Process (2 Scenarios)......264
2. Use Case 2.2: Create Components and Component Attributes..265
3. Use Case 2.3: Edit Components and Component Attributes (2

Scenarios)..266
4. Use Case 2.4: Create Steps and Step Attributes...........................267
5. Use Case 2.5: Edit Steps and Step Attributes (2 Scenarios)........268
6. Use Case 2.6: Move (Rearrange) Components.............................269
7. Use Case 2.7: Delete Components and Steps (2 Scenarios).........270
8. Use Case 2.8: Decompose Components into Subcomponents271
9. Use Case 2.9: Decompose Steps ...272

E. USE CASE 3.0: SOFTWARE ENGINEER SPECIFIES
COMPONENT DEPENDENCIES...273
1. Use Case 3.1: Create Dependency ...274
2. Use Case 3.2: Establish Dependency Linkages Between

Components (2 Scenarios)...275
3. Use Case 3.3: Deploy Dependency Through the Development

Effort (2 Scenarios) ..277

xv

F. REGISTER COMPONENTS AND STEPS TO EXTERNAL TOOL
ARTIFACTS AND ACTIVITIES ..277
1. Use Case 4.1: Map Components to Tool Objects278
2. Use Case 4.2: Map Steps to Tool Activities/Methods...................278
3. Use Case 4.3: Insert Translators..279

G. USE CASE 5.0: CASES THROUGH MIDDLEWARE
MECHANISM COLLECTS/TRACKS ARTIFACTS AND
ACTIVITIES..279

H. USE CASE 6.0: SELECT VIEWS OF ARTIFACT DEPENDENCIES280
1. Software Engineer Selects a View Based on Single Dependency

Link (2 Scenarios) ..280
2. Use Case 6.2: Software Engineer Selects a View Based on

Single Component ..282
3. Use Case 6.3: Software Engineer Selects a View Based on a

Threshold Dependency Value for a Particular Type of
Dependency...283

APPENDIX B: CARA INFUSION PUMP REQUIREMENTS FROM REQUISITE
PRO ...285
A. INTRODUCTION..285
B. CARA REQUIREMENTS SPECIFIED IN REQUISITE®PRO............285

APPENDIX C: SEATOOLS CARA MODEL DESCRIPTIONS311
A. INTRODUCTION..311
B. VERSION 1 ..311

1. Parent Vertex: Puett_Liang_CARA ..311
2. Parent Vertex: CARA...312
3. Parent Vertex: Management_Module...313
4. Parent Vertex: Pump_Control_Module314
5. Parent Vertex: IO_Module ..315

B. VERSION 2 ..315
1. Parent Vertex: Puett_Liang_CARA ..316
2. Parent Vertex: Infusion_Pump..317
3. Parent Vertex: CARA...318
4. Parent Vertex: Management_Module...319
5. Parent Vertex: Pump_Control_Module320
6. Parent Vertex: IO_Module ..321
7. Parent Vertex: Line_Monitor ..322
8. Parent Vertex: Resuscitation_File...323
9. Parent Vertex: Module1 ...324
10. Parent Vertex: Voting_Element ..325
11. Parent Vertex: Alarm_Controller1 ...326
12. Parent Vertex: Display_Driver..327
13. Parent Vertex: Display ...328
14. Parent Vertex: AirOK_Monitor..329
15. Parent Vertex: EMF_calculator ..330
16. Parent Vertex: Impedance_Monitor ...331
17. Parent Vertex: BP_Calculator...332

xvi

LIST OF REFERENCES..333

INITIAL DISTRIBUTION LIST ...343

xvii

LIST OF FIGURES

Figure 1 Life-Time Costs of Software Development...1
Figure 2 Typical Software Development Process Interaction..4
Figure 3 Holistic Model of Software Process Interaction ..15
Figure 4 Software Evolution as a Feedback and Control System27
Figure 5 Directed Hypergraph with Incidence Matrix ...33
Figure 6 Software Evolution Processes with CASES (from [HARN99c])34
Figure 7 QFD Enhances Cross-Functional Communication (after [COHE95])37
Figure 8 The Quality Continuum (after [ZULT92, 93]) ..42
Figure 9 Kano diagram for Requirements (after [ZULT90]) ...43
Figure 10 First Level QFD Matrix -- The "House of Quality" ..46
Figure 11 Example of a Simplistic QFD Matrix Deployment ...48
Figure 12 Simplistic SQFD Model drawn as a Process Diagram49
Figure 13 SQFD -- Deployment of the "Customer's Voice" (after [ZULT90])52
Figure 14 SQFD -- Matrix Deployment as a Process Diagram..53
Figure 15 SQFD for Embedded Systems (after [THAC90])..54
Figure 16 Embedded System SQFD Displayed as a Development Process Model.........54
Figure 17 SQFD and Concurrent Engineering (after [THAC90])55
Figure 18 Typical QFD Symbols for Degree of Relationship..56
Figure 19 3D View of Matrix Interaction (after [DEAN92])...58
Figure 20 Federation Interoperability Object Model (from [YOUN02a])61
Figure 21 Middleware Based Translation Using the FIOM (from [YOUN02b])62
Figure 22 Role of Ontology in FIOM Construction (from [YOUN02b])68
Figure 23 Protégé Screen Shot ...72
Figure 24 Synchronization of Perspectives in the Rational Process (from [KRUC96]) ..75
Figure 25 Intellectual Activity in the Rational Process (from [RATI03])76
Figure 26 Rational Unified Process (from [KRUC96]) ...80
Figure 27 SWEBOK Software Requirements Taxonomy (after [SWEB01])..................87
Figure 28 SWEBOK Software Tool Taxonomy (after [SWEB01]).................................88
Figure 29 Feature Model of the PSDL Timing Constraints of SEATools

(after [HASN03]) ...97
Figure 30 Construction of an Affinity Diagram...99
Figure 31 Ontology Inter-relationship (after [HASN03]) ..100
Figure 32 Excerpt of the Requisite®Pro Feature Model (after [HASN03])103
Figure 33 Excerpt from the SEATools Feature Model (after [HASN03]).....................108
Figure 34 Software Development Tool Federation Ontology (after [HASN03])115
Figure 35 Excerpt of the Class Structure of the Requisite®Pro Ontology

(after [HASN03]) ...116
Figure 36 Class Structure of the SEATools Ontology (after [HASN03])......................117
Figure 37 Communication Class Inter-relationships (from [HASN03])........................118
Figure 38 Sample Relational Hypergraph (from [HARN99c])......................................123
Figure 39 Deployment of Risk Example..128

xviii

Figure 40 Hypergraph Representation of the QFD Example ..129
Figure 41 Weighted Digraph Representation of the QFD Example129
Figure 42 Hypergraph with Risk Dependency Values...139
Figure 43 Subgraphs Trimmed with Dependency Threshold ..140
Figure 44 Weighted Digraph Example...140
Figure 45 Component Trace from A3 with Threshold 2..141
Figure 46 Component Trace from A3 with Threshold 8..141
Figure 47 AHP Clustering Example...150
Figure 48 FIOM Construction Methodology ...155
Figure 49 Protégé Base XML Schema ...157
Figure 50 Software Development Tool XML Schema Excerpt158
Figure 51 SEATools XML Schema Excerpt ..159
Figure 52 Requisite®Pro XML Schema Excerpt...160
Figure 53 Requirement Federation Entity (FE)..161
Figure 54 Rational Rose Extensibility Interface (from [ROSE02])163
Figure 55 Insertion-Sort Algorithm Pseudo-Code (from [CORM91])164
Figure 56 Merge-Sort Algorithm Pseudo-Code (from [CORM91])164
Figure 57 CASESv1.1 New Project Screenshot...176
Figure 58 CASESv1.1 Project Schema Creation Dialog ...177
Figure 59 CASESv2 Project Schema Creation Process ...178
Figure 60 CASESv2 Completed Project Schema...179
Figure 61 IBIS Evolutionary Process Model in CASESv2..180
Figure 62 CASESv2 Dependency Creation Dialog ...181
Figure 63 C4I Systems Requirements Analysis Step (after [HARN99c])183
Figure 64 CASESv2 Data Integration via Import CSV File (Requirements variant 2

version 3) ...184
Figure 65 QFD Matrix: Requirements x Specifications (Dependency: Reqt Risk)185
Figure 66 User-Defined Example from Chapter IV...187
Figure 67 QFD Matrix: R x S (Dependency: Risk)...187
Figure 68 User-Defined Views with Threshold = µ and Threshold = 1µ σ+188
Figure 69 Component Trace Example from Chapter IV..189
Figure 70 QFD Matrices for Component Trace Example..190
Figure 71 QFD Trace from A3 (Upstream & Downstream) Threshold 2......................190
Figure 72 QFD Trace from A3 (Upstream) Threshold 8 ...191
Figure 73 Hello World Development Process..200
Figure 74 SEATools Hello World Prototype Variants 1 & 2, Versions 1 & 2202
Figure 75 Hello World Implementation Variants 1 & 2, Versions 1 & 2203
Figure 76 SEATools Hello World Prototype Variant 2, Version 3................................204
Figure 77 Hello World Implementation Variant 2, Versions 3......................................205
Figure 78 CARA Software Development Process ...207
Figure 79 Hello World Project Schema ...210
Figure 80 Component Trace: R2.2-2.3, t = 1 ...211
Figure 81 QFD Matrix: S1.1 x C1.1, d = Risk ...211
Figure 82 Component Trace: S1.1-O1.2, t = 1...212
Figure 83 Dependency Threshold: S1.1 x C1.1, d = Difficulty, t = µ213
Figure 84 Component Trace: F2.2-1, t = 3...214

xix

Figure 85 Dependency Threshold: S2.3 x C2.3, d = AHP Priority, t = 0.5µ σ+215
Figure 86 QFD Matrix: R2.3 x S2.3, d = Priority ..216
Figure 87 Dependency Threshold: R1.1 x S1.1, d = Safety, t = 1.5µ σ+218
Figure 88 Dependency Threshold: R1.1 x S1.1, d = AHP Priority, t = 2.5µ σ+219
Figure 89 Dependency Threshold: R1.1 x S1.1, d = Risk, t = 1.0µ σ+220
Figure 90 Component Trace: R1.1-34, t = 3 ..221
Figure 91 Component Trace: S1.1-O1.2.3.5, t = 1...222
Figure 92 CASES Context Diagram ..261
Figure 93 CASES Top-Level Use Cases..262
Figure 94 Use Case 1.0: Import Translators from Babel ...263
Figure 95 Use Case 2.0: Software Engineer Specifies Software Process264
Figure 96 Use Case 3.0: Software Engineer Specifies Component Dependencies........274
Figure 97 Use Case 4.0: Register Components and Steps to External Tool Artifacts

and Activities ...277
Figure 98 Use Case 5.0: Register ...279
Figure 99 Use Case 6.0: Select Views of Artifact Dependencies280
Figure 100 Top Level CARA Model v1 ..312
Figure 101 CARA Software Model v1...312
Figure 102 Management Module v1 ..313
Figure 103 Pump_Control Module v1..314
Figure 104 IO_Module v1..315
Figure 105 CARA Software Model v2...316
Figure 106 Infusion_Pump Pin-outs v2..317
Figure 107 CARA System Modules v2..318
Figure 108 Management_Module v2 ...319
Figure 109 Pump_Control_Module v2...320
Figure 110 IO_Module v2..321
Figure 111 Line_Monitor v2 ..322
Figure 112 Resuscitation_File v2...323
Figure 113 Module1 v2 ..324
Figure 114 Voting_Element v2 ..325
Figure 115 Alarm_Controller1 v2..326
Figure 116 Display_Driver v2..327
Figure 117 Display v2 ..328
Figure 118 AirOK_Monitor v2 ..329
Figure 119 EMF_Calculator v2..330
Figure 120 Impedance_Monitor v2..331
Figure 121 BP_Calculator v2 ...332

xx

THIS PAGE INTENTIONALLY LEFT BLANK

xxi

LIST OF TABLES

Table 1 Lehman's Laws of Software Evolution (after [LEHM97])30
Table 2 Akao "Matrix of Matrices" Summary (after [COHE95])51
Table 3 Overview of the Enterprise Ontology (after [USCH98]).................................67
Table 4 DAML Ontology Library: Software Tool Ontology (after [DAML03])89
Table 5 DAML Ontology Library: Software Engineering Ontology (after

[DAML03])..90
Table 6 QFD Matrices for Performing Object-Oriented Analysis (after [LAMI95])...91
Table 7 RequisitePro Feature List (after [HASN03]) ..107
Table 8 SEATools Feature List (after [HASN03]) ...112
Table 9 Common Characteristics for Software Development Tool Federation (after

[HASN03])...114
Table 10 "Downstream" Dependency Deployment ..125
Table 11 "Upstream" Dependency Deployment ...127
Table 12 QFD Matrix for Risk Deployment Example..128
Table 13 Dependency Thinning (Dependency = 10) ..132
Table 14 Dependency Concentration (Dependency = 40) ..132
Table 15 QFD Coverage Analysis Example ...136
Table 16 Coverage Analysis Example: Side-by-Side Comparison137
Table 17 QFD Coverage Analysis Example ...137
Table 18 Coverage Analysis Example: Side-by-Side Comparison138
Table 19 Example Absolute Importance Scale ...144
Table 20 Absolute Importance Valuation Scheme ...145
Table 21 Relative Importance Valuation Scheme...145
Table 22 Ordinal Importance Valuation Scheme..146
Table 23 Example AHP Comparison Matrix (after [SAAT80])...................................148
Table 24 AHP Comparison Valuation Scheme...148
Table 25 AHP Example Normalized Priority Values ...149
Table 26 Excerpt from CARA Infusion Pump Requirements150
Table 27 Large Granularity Pseudo-Code CSV File ..164
Table 28 Fine Granularity Pseudo-Code CSV File (after [CORM91])165
Table 29 Customer Requirements Variant 1 Version 1 (R1.1).....................................201
Table 30 Customer Requirements Variant 2 Version 2 (R2.2).....................................201
Table 31 Developer-Customer Question & Answer Version 1 & 2 (Q1.1, Q2.2)........201
Table 32 Software Specifications Variants 1 & 2 Versions 1 & 2 (S1.1, S2.2)202
Table 33 Code Variant 1 Version 1 (C1.1) ...202
Table 34 Code Variant 2 Version 2 (C2.2) ...203
Table 35 Customer Feedback Version 1 & 2 (F1.1, F2.2)..203
Table 36 Customer Requirements Variant 2 Version 3 (R2.3).....................................204
Table 37 Developer-Customer Question & Answer Version 3 (Q2.3).........................204
Table 38 Software Specifications Variant 2 Version 3 (S2.3)......................................204
Table 39 Code Variant 2 Version 3 (C2.3) ...205
Table 40 Customer Feedback Version 3 (F2.3) ..205

xxii

Table 41 Excerpt of CARA Questions and Answers (after [WRAI01b]).....................206
Table 42 Excerpt from CARA Model 1, Specifications 1.1 ...208
Table 43 Most Safety Critical Components: R x S, d = Safety, t = 1.5µ σ+218
Table 44 Most Important Components: R x S, d = AHP Priority, t = 2.0µ σ+219
Table 45 Most Risky Components: R x S, d = Risk, t = 1.0µ σ+220
Table 46 Component Trace: R1.1-34, t = 1 ...221
Table 47 Component Trace: S1.1-O1.2.3.5, O1.2.3.5.9, E38, t = 1.............................222
Table 48 Summary of Sources of Invalidity ...231
Table 49 Actor-System Responses for Use Case 1.0..263
Table 50 Actor-System Responses for Use Case 2.1 (Scenario 1)264
Table 51 Actor-System Responses for Use Case 2.1 (Scenario 2)265
Table 52 Actor-System Responses for Use Case 2.2..265
Table 53 Actor-System Responses for Use Case 2.3 (Scenario 1)266
Table 54 Actor-System Responses for Use Case 2.3 (Scenario 2)267
Table 55 Actor-System Responses for Use Case 2.4..268
Table 56 Actor-System Responses for Use Case 2.5 (Scenario 1)268
Table 57 Actor-System Responses for Use Case 2.5 (Scenario 2)269
Table 58 Actor-System Responses for Use Case 2.6..269
Table 59 Actor-System Responses for Use Case 2.7 (Scenario 1)270
Table 60 Actor-System Responses for Use Case 2.7 (Scenario 2)271
Table 61 Actor-System Responses for Use Case 2.8..272
Table 62 Actor-System Responses for Use Case 2.9..273
Table 63 Actor-System Responses for Use Case 3.1..274
Table 64 Actor-System Responses for Use Case 3.2 (Scenario 1)275
Table 65 Actor-System Responses for Use Case 3.2 (Scenario 2)276
Table 66 Actor-System Responses for Use Case 3.3 (Scenario 1)277
Table 67 Actor-System Responses for Use Case 3.3 (Scenario 2)277
Table 68 Actor-System Responses for Use Case 4.1..278
Table 69 Actor-System Responses for Use Case 5.0..279
Table 70 Actor-System Responses for Use Case 6.1 (Scenario 1)281
Table 71 Actor-System Responses for Use Case 6.1 (Scenario 2)282
Table 72 Actor-System Responses for Use Case 6.2..283
Table 73 Actor-System Responses for Use Case 6.3..284

xxiii

ACKNOWLEDGMENTS

It would have been impossible for me to undertake an endeavor of this size and

scope without the assistance of numerous individuals. It is with sincerest thanks that I

would like to acknowledge their help, contribution, and guidance to my education and

this accomplishment.

First, I would like to acknowledge the Masters students with whom I worked: LT

Tolga Demirtas, Turkish Navy; LT Neji Hasni, Tunisian Navy; and MAJ Art Clomera,

U.S. Army. Each of them challenged me academically as much as I challenged them and

without their help it would have been impossible for me to tie together the many threads

of this research.

I would like to thank Professor Richard Reihle, who even though not a part of my

dissertation committee, did as much for teaching me what it means to be a software

engineer as anyone I have met.

Next, I would like to acknowledge the members of my dissertation committee:

Professors Rasmussen, Michael, Shing, and Ludlow. Their tireless efforts to steer me in

the right directions, clarify my understanding of complex material, and offer suggestions

of how to improve the dissertation were invaluable. Professor Luqi, as my dissertation

supervisor, nudged me when I needed nudging and provided me the guidance I needed to

get the research completed.

Finally, I would like to thank my wife, Peg, and sons, Michael and Gregory who

have faithfully supported me in my every enterprise.

To each and every one of you -- Thank-you.

xxiv

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

A. MOTIVATION
The Department of Defense and the nation become more reliant on software every

day; yet, consistently producing high quality software on-time and within budget that

fully meets customers' requirements is challenging for many reasons. While there have

been many investigations to address this challenge, "understandability" (or the lack

thereof) is considered to be a major issue. Exacerbating this issue are the needs for

holistic and coherent development processes and adequate requirements engineering

integration.

1. Software Understandability
Consider the following charts (see Figure 1) related to total costs during the

Software Development Lifecycle and the cost impact of maintenance -- where

"maintenance" refers to all activities beyond the initial release.

 Initial SW
Development
 25%

 Maintenance
 75%

 SW Life-Cycle Costs (after [LIEN78])

 Initial SW
Development
 25% Maintenance

 Coding &
 Testing
 40%

 Costs of "Understanding" (after [PARI83])

 Understand
What to Maintain
 35%

 SW
Adaptation
 18%

Functionality
 Addition or
Modification
 65%

 Type of Maintenance (after [SOMM01])

 Fault Repair
 17%

Figure 1 Life-Time Costs of Software Development

The first pie chart in Figure 1 illustrates that maintenance costs dominate initial

software development costs by a factor of three. The second chart illustrates that costs

associated with "understanding" exactly what to maintain account for almost half of the

maintenance costs (i.e., studying and understanding what to add, correct, or change is

almost as expensive as actually performing maintenance coding and testing). While data

supporting the first two charts is somewhat dated, [MEYE97] and [BOEH95] confirm

that more recent evidence still supports these older observations. Finally, the third pie

chart illustrates how the maintenance costs are divided; illustrating that “understanding”

 2

is required in three different contexts depending on the particular type of maintenance to

be performed. Together, these charts imply that it is not enough to simply improve

individual tools and/or the process used to develop software; software engineering

researchers must take a more holistic view of how software is handled over its entire

lifecycle and improve how the tools and processes work together over long periods of

time to overcome the understandability challenge. This holistic view considers the whole

of the software lifecycle and does not simply focus on a single iteration of the lifecycle,

or a single process within an iteration, or a single set of software artifacts produced by an

individual process. Unfortunately, rather than taking such a holistic approach, the lion's

share of software engineering research has been devoted to meeting this challenge by

improving specific aspects of the software development process (e.g., requirements

engineering, reuse, testing), by improving the software development process itself (e.g.,

evolutionary prototyping, spiral development), or by improving individual tools for these

processes (e.g., Rational Rose, Requisite®Pro, DOORS). Although "Software

Evolution" has become a mainstream software engineering subfield, there has still been

little unifying research that attempts to determine the best way that these tools and

models should (and could) interact to address the "understandability" problem directly.

There appear to be two aspects to this problem of understandability. First, the

engineer must always have an "understanding" of what the customer wants (even years

after the original requirements were articulated). Second, the engineer needs to have an

"understanding" of what previous software engineers have done to address the customer's

requirements. While documentation is good at recording decisions and agreements, it is

ineffective at recording the detailed knowledge required to understand how a software

program really works [MCBR02]. There are at least two approaches that could be taken

to solve the understandability problem.

a. Produce Tools to Promote Understandability of Customer
Desires and Legacy Software Development Efforts

One approach would be to build some tools: a tool that does a better job

of requirements engineering by continually (over the lifecycle of development) querying

customers as to what they want and how those desires impact all artifacts of the

development, and a second tool which could intelligently parse through pertinent current

 3

and past software development artifacts recognizing and extracting just the information

the engineer needs at exactly the time it is needed (and it has to be able to do this with

any artifact, produced by any tool).

b. Produce a Framework that Promotes Understandability of
Customer Desires and Legacy Software Development Efforts

Another approach would be to establish a holistic framework where all the

information is recorded as it is created and the relationship of the artifact (to all other

artifacts) is automatically tracked throughout the lifecycle. The framework would be

flexible enough to work with any development tool or model. The relationship of a new

piece of information to all others is established on creation and the software engineer uses

the dependencies of the artifacts to extract relevant information (using engineer defined

contexts or views). However, just recording the information is not enough to justify the

additional overhead of entering such information into a system. As [LEHM69], a pioneer

in the field of software evolution, stated, "The manager faced with the daily problems of

meeting a deadline will always first abandon methodology and systematics." Engineers

will not use such a framework unless it can help instantiate detailed consequences of

explicit high-level decisions and help to propagate consequences of changes.

Of these two approaches for tackling the "understandability problem," the "tools"

solution appears to be beyond current technological capability; however, the "framework"

option shows promise and is the focus of this dissertation research.

2. Holistic Development
Software engineering research is typified by developing or improving individual

aspects of software development. Examples include research into software evolution

models, requirements engineering, risk and cost estimation, software reuse, prototyping,

testing, software integration, software maintenance, re-engineering, performance

analysis, domain analysis, architecture design, etc. These individual aspects of software

development necessitate that the software engineer provide any needed interface between

different development models and tools (see Figure 2).

 4

SW Engineer

Quality Control

Architecture Design

SW Testing

Prototyping

Cost Estimation

Risk Management

Performance Analysis

Requirements
Engineering

Project Management

SW Reuse

SW Maintenance

Domain Analysis

Re-Engineering

SW Evolution

Figure 2 Typical Software Development Process Interaction

While there has been plenty of research into the development of Integrated

Software Development Environments (ISDEs) [LEHM87], [BROW92, 93], [KADI92a,

b], [ARCA95] and software development tool suites [RATI98], [KRUC96], there has

been little research into holistic models to define how these various threads and processes

could (and should) most efficiently and effectively interact over the entire lifecycle of the

software development effort. Currently, there is inadequate long-term communication of

risk and requirements across disjoint tools and models.

A proponent of agile software development processes, [MCBR02] notes that

while there has been a great deal of research effort and money devoted to trying to

remove the human from the software development process, this effort has met with little

success. Software engineers can only automate parts of the process; they cannot

automate processes that require rich interactions between people. For instance, the gap

between requirements specification and design specification cannot be filled with

automated tools; only skilled developers can bridge such a large and complex gap.

[MCBR02] states that most parts of the software development process that can be

automated have been automated; what remains is to make the best use of the tools at

hand. As engineers automate successive parts of the development process, they are not

 5

able to eliminate complexity; they are only able to manage it. Thus, there is much to be

gained by improving the way in which developers use existing tools, rather than

constantly developing new ones.

The development of a holistic framework potentially provides seamless

interoperability between software development processes allowing software systems to

be produced more efficiently and reliably with high quality. Additionally, the existence

of such a framework enhances the discovery of dependencies among different aspects of

the software engineering processes. The hope is that it will enable software engineers to

discover process improvements. The long-term goal of this research is to support all

aspects of software engineering; however, the immediate goal presented in this

dissertation is to demonstrate the theoretical feasibility of integrating a selected subset of

models and tools using a holistic framework.

3. Requirements Engineering
At least one third of software development projects (including military projects)

run into trouble for reasons that are directly related to requirements gathering,

requirements documenting, and requirements management. A Standish Group (1994)

study (as reported in [LEFF00]) noted that the three most commonly cited factors that

caused software projects to be "challenged" were (with some overlap in percentages) as

follows:

• Lack of user input: 13% of all projects,
• Incomplete requirements and specifications: 12% of all projects, and
• Changing requirements and specifications: 12% of all projects.

Amplifying this problem is the fact that fixing errors missed during the

requirements phase can be extremely costly. Depending on how much later the error is

discovered, the party acquiring a software system may incur costs for re-specification,

redesign, change orders, recall of defective versions, service costs, documentation, and

retraining. The Federal Aviation Administration’s (FAA’s) Advanced Automation

System (AAS) is an example of how significantly costs rise when requirements errors are

identified and addressed at later stages in a development effort [GAOT98]. The data

related to requirements management demonstrates the following two things:

 6

• Requirements errors are the most likely category of error.
• Requirements errors tend to be the most expensive error to fix.

A requirements-based methodology used widely in the global product industry to

meet these same challenges of understandability, quality, safety, and reliability in highly

constrained time/budget development environments is a methodology known as "Quality

Function Deployment" or "QFD". QFD is focused on meeting three major challenges in

the development of products: ensuring that the "voice" of the customer is adequately

transferred to each segment of the development effort, ensuring that there is no loss of

development information, and ensuring that different segments of the development effort

are working in concert to satisfy the same set of customer requirements. As stated by

one of the pioneers of QFD in the United States [CLAU88], QFD "facilitates a holistic

response to customer needs." QFD allows engineers to summarize basic data in usable

form. It allows marketing executives to directly hear the customer's desires. It allows

general managers to discover strategic opportunities. QFD encourages all of the different

groups in a development effort to work together to understand one another's priorities and

goals [HAUS88].

However, the use of QFD as applied to software development has been very

limited. In a 1995 survey of thirty-seven major software vendors (companies that

produce and sell software as a major component of their business operations) only 16%

of them used Software QFD (SQFD) [HAAG96]. There are two reasons cited for this:

• SQFD has not been rigorously integrated throughout existing software
development models and tools.

• Material published to date about SQFD has been highly conceptual with
little pragmatic application. Companies that are successfully using SQFD
are reluctant to offer up their practical experience and the competitive
advantage that the SQFD has afforded them.

As cited in the survey, all major software vendors perceived that the

requirements-gathering tools in their respective software development methodologies

were not adequate. QFD is a methodology that specifically targets the problems in

requirements management by ensuring that the "voice of the customer" is appropriately

deployed throughout the follow-on phases of the design and is not forgotten or

misinterpreted immediately after the requirements capture phase. However, as of now,

 7

QFD must be manually integrated into software development processes; there are no

mechanisms for having it automatically interact with existing software development

tools. This research seeks an improvement to this status quo by incorporating automated

QFD mechanisms into a software evolution model.

4. Coherent Development
In most software development efforts the requirements engineers can readily point

out which requirements are the best analyzed and most clearly stated. The software

architects proudly show off portions of the architecture that employ the best technology

and will be encapsulated in the most cohesive and least coupled modules. The

programmers can point to the code that is most elegantly coded and the testers can

exactly identify the portions of code that have been most thoroughly tested and likely

have the fewest defects. Unfortunately, it is only by accident that any of these "best"

areas of development will coincide with the particular functionality that the customer

thinks provides him the greatest value -- "mediocre software is the result" [ZULT93].

Such observations are not new. [LEHM69] in commenting on how hierarchical

management attempts (but fails) to handle this problem states:

The consequences of this procedure [hierarchical project management] are
apparent. Communications within a group, and more importantly,
between different groups, tend to be random and a matter of chance.
Personal relationships between individuals exert a strong influence on
final system structure, distribution and content. Optimisation, if any, is
local within each group. Thus the system becomes an assembly of its
parts, amorphous, redundant and with random, largely invisible,
communication. Attempts to debug, improve or enlarge the system
become very difficult tending to cause its collapse.

Thus, while the problems of incoherence in software development were recognized as far

back as 1969, little has changed to correct the problem.

It has been noted that traditional, non-software product development can also be

incoherent with respect to the attributes that customers associate with a quality product.

However, the use of QFD addresses this problem by focusing all of the company's

development efforts in the same direction [CLAU88]:

Although much of the initial attention given to QFD in the U.S. focused
on its formats, QFD's style of organizational behavior is even more

 8

important. This style emphasizes multifunctional teams that work to
achieve consensus about customer requirements and product-expectation
requirements. This helps break down segmentation among the various
corporate functions and brings the collective wisdom of the corporation to
bear on the product. The team produces product specifications responsive
to customer needs that will be vigorously worked on by all the functions.
This compares with today's style of each function doing its own thing and
then throwing the result over the wall to the next function… There's a
tendency for specialists to stay cloistered within their specialties.
Individually, they contribute tremendous specialized knowledge, but
there's some difficulty in integrating that knowledge so that it provides a
holistic response to customer needs.

[ZULT92] reinforces this view for software:

Traditional [software] development is unfocused with respect to quality.
The best analyzed requirements are not the best designed. The best
designed elements are not the best coded. The best code is not the best
documented. It is only by chance that the best efforts of one phase receive
the best efforts of a subsequent phase… Incoherent processes are
inefficient and expensive ways to satisfy customers, often forcing trade-
offs of quality for schedule or resources.

What is needed is a holistic approach that allows the software developer to have

visibility over the more important (as opposed to less important) aspects of the

development effort so that they may receive appropriate attention and resources. Thus,

by successfully integrating QFD into the software development evolution process,

software engineers may later extract particular slices of the development effort that have

particular meaning, allowing them to work in a more coordinated and coherent manner,

make better decisions, and produce better software.

5. Software Safety
"Software safety" has become a significant system issue. Increasingly, software

is used in safety-critical applications during which if the software fails, there can be

injury, loss of life, property damage, or efficacy losses. Managing the safety risk

associated with the software control of critical functions requires a structured, disciplined

system safety management and engineering approach that focuses on the unique aspects

of software in a systems context. Holistic approaches provide the software engineer

visibility of the dependencies between safety-related software artifacts. Such visibility

 9

permits the engineer to confidently modify safety-critical software, knowing that the

dependencies associated with changes are being tracked. Producing safety-critical

software is an expensive and time-consuming endeavor. Much of the expense and time is

due to identifying all "knock-on" effects when modifying safety-critical parts of the

software. A holistic model can make it possible to identify all of these "knock-on"

effects in a timely and systematic manner. The model itself can be automated to some

extent, freeing the software engineer from the mechanistic aspects of injecting quality

into software systems.

Many of these safety-critical problems and requirements are the same as those

faced by NASA. QFD has been used successfully as a methodology that manages safety-

critical requirements for large complex space systems [DEAN92] by ensuring that safety

requirements are deployed throughout the follow-on phases of the design.

6. Solving these Problems with the Holistic Framework For Software
Engineering (HFSE)

The following elements are required to deliver any reliable, safe, and quality

software system of any significant scope [LEFF00]:

• A pragmatic process for defining and managing the requirements for
software;

• A solid, rigorous, and repeatable methodology for the design and
development of software;

• The application of various proven, innovative, techniques for verifying
and validating that the software is safe and effective; and

• Extraordinary skills and commitment on the part of both the software
development and software quality assurance teams.

This dissertation implements these elements by employing a Holistic Framework

for Software Engineering (HFSE) that not only lets software engineers work faster, but

lets them work smarter with greater understanding of customer desires and previous

development work. The Holistic Framework is established by embedding the relevant

portions of the Quality Function Deployment methodology into the Relational

Hypergraph Computer Aided Software Evolution model, then integrating this extended

evolution model with a Federation Interoperability Object Model created from the tools

and models used by the development team. While there is no “silver bullet” that will

solve all software development problems, the HFSE provides an improved requirements-

 10

based model upon which to develop safe, reliable software, produced on-time and on-

budget that fully meets the customers' requirements.

This research constitutes an initial investigation into the development of the

HFSE that establishes mechanisms by which existing software development tools and

models can work together. This dissertation demonstrates that establishing a

mathematical framework that allows existing software engineering process models (and

tools supporting those models) to seamlessly interact is technically feasible. Moreover,

this dissertation presents the methods and principles needed to realize such a framework

and the associated computer aids. The longer-term future goals of this line of research

are to actually improve the efficiency of software development processes and to improve

previously developed software's quality, safety, and reliability by applying the framework

to specific development efforts.

B. RESEARCH HYPOTHESIS AND METHODOLOGY

1. Research Hypothesis
The following is a statement of the Dissertation Hypothesis:

It is theoretically feasible to integrate a selected set of software
development tools and/or models through application of a Holistic
Framework for Software Engineering (HFSE),

Where

• The HFSE consists of an extended Software Evolution model
(extended with Quality Function Deployment (QFD)) integrated
with a Federation Interoperability Object Model (FIOM) of the
subordinate software development tools/models.

• The integrated tool/model set provides additional interoperability
(i.e. additional data exchange and joint task execution) beyond that
interoperability available prior to the application of the HFSE to
the software development tool set.

2. Research Methodology
This research was completed by executing five major tasks: developing a software

development tool ontology, integrating QFD into the Relational Hypergraph model of

software evolution, creating an object model of software development tools and

 11

integrating that model with the evolution model, prototyping the HFSE by extending the

Computer-Aided Software Evolution System (CASES), and applying the HFSE to a set

of software development tools to provide confirming evidence for the research

hypothesis.

a. Development of a Software Tool Artifact Ontology
The first step in this research was to identify and define the characteristics

of software development process models and tools so that they can be used to properly

extend the Relational Hypergraph Software Evolution Model and be used to construct an

Object Federation for interoperability. The approach to this portion of the investigation

was to analyze the structure, inputs, and outputs of a small set of individual tools:

Rational Corporation's Requisite®Pro -- a requirements management tool, and the

Software Engineering Automation Tools (SEATools) -- a software development

prototyping suite. This included performing a domain analysis (of this subset of tools)

and building a feature model of that domain [CZAR00]. Next, the main artifact attributes

were considered in the context of the objects needed for establishing an Object

Federation. Using this context the characteristics were holistically defined within a

software development tool ontology [USCH96]. The bulk of this portion of the

dissertation research is presented in Chapter III.

b. Integration of QFD and the Evolution Model

Actually embedding key portions of the QFD methodology within the

Relational Hypergraph model required an examination of requirements prioritization,

requirements uncertainty, project risk, performance trade-offs between software

specifications, and appropriateness of software metrics to measure outcomes. Next,

additional objects and attributes were added to the hypergraph model to account for QFD

dependencies. The correlation weightings that form the core of QFD were captured as

edge weights in the Relational Hypergraph model and priority weightings were

established as additional component attributes to be deployed among the software

artifacts. The hypergraph requirements model was integrated with the IBIS (Issue Based

Information System) evolutionary prototyping model from [IBRA96] which stemmed

from the seminal work of [KUNZ70]. This model links the requirements to their

rationale, which consists of the positions of various stakeholder groups on the relevant

 12

requirements issues, and is useful for negotiating and resolving differences on

requirements issues between different stakeholders. This is a qualitative model. One of

the objectives in integrating the hypergraph model with QFD was to provide quantitative

models of priorities that are sensitive to dependencies and disagreements among

stakeholders. However, one of the weaknesses of QFD is its general treatment of the

requirements as independent entities in the mathematical analysis. In reality,

requirements are subject to a complex set of interdependencies that are captured by the

hypergraph model. By integrating the two models, both aspects (qualitative and

quantitative) are now available for decision support. The bulk of the research supporting

this portion of the dissertation is presented in Chapter IV.

c. Creation of a Federation Interoperability Object Model
Young presents an Object-Oriented Model for Interoperability (OOMI) of

heterogeneous systems [YOUN01, 02a, 02b]. He developed this model for use in

establishing interoperability of military C4I systems. However, in this research this same

model was applied to a different domain -- the interoperability of software development

tools and models. The OOMI relies on the collection of real-world entities used to define

the interoperation of a specific collection of systems, which is called a Federation

Interoperability Object Model (FIOM). The software development tool ontology

provided an object framework from which a partial software development tool FIOM was

constructed. The partial FIOM contained relationships between classes, packages,

interfaces, and other elements used in the software process models and tools. Next, the

FIOM was integrated with the extended evolution model to form an implementation of

the HFSE. This portion of the dissertation research is presented in Chapters V and VI.

d. Prototype the HFSE by Extending CASES
The fourth major task in competing this research involved developing a

proof of concept computer aid that was later used to demonstrate the software

engineering contributions presented in the dissertation. The work here relied on

extending a previous software evolution system -- the Computer-Aided Software

Evolution System (CASES). The main extensions to CASES involved: providing a

graphic editor so that a user could define their own unique software development process,

embedding QFD into the evolution system so that artifact dependencies could be defined

 13

and deployed throughout the software development effort, and providing user-selectable

views that isolated particular "slices" of the underlying hypergraph -- providing software

engineering informative decision support. The extensions to CASES are presented in

Chapter VII and use cases for CASES are presented in Appendix A.

e. Application of the HFSE to a Software Development Scenario
The last major task in the dissertation research was to apply the HFSE in a

software development scenario to provide confirming evidence for the research

hypothesis. Here, Requisite®Pro and SEATools were unified by the HFSE and applied

to a particular software scenario. This scenario involved using a specified set of software

requirements (specified within Requisite®Pro) for the Computer Aided Resuscitation

Algorithm (CARA) software for a casualty intravenous fluid infusion pump. Next, the

scenario required using SEATools to construct a software prototype that embodied those

requirements. The interoperability benefits provided through the use of the HFSE in this

software development scenario were recorded and provide confirming evidence is

support of the dissertation hypothesis.

The dissertation experiment is a static group comparison in which a small

representative subset of tools/models was used to show that the HFSE can be used to

unify them and that the interoperability of the subset of tools was improved. Campbell

and Stanley [CAMP63] point out that this comparison is best characterized as a pre-

experiment because it falls short of an unbiased application of the scientific method. The

results (and shortcomings) of this experiment are presented in Chapter VIII.

C. OVERVIEW OF THE HOLISTIC FRAMEWORK FOR SOFTWARE
EVOLUTION
The Holistic Framework for Software Engineering is both a conceptual

framework for establishing interoperability between software development tools as well

as a methodology (with tool support) that assembles the necessary objects and

interoperability constructs. The HFSE was established by embedding the relevant

portions of the QFD methodology into the already existing Relational Hypergraph

Computer-Aided Software Evolution model and then integrating this extended evolution

model with a FIOM created from the tools and models used in software development.

 14

1. Software Evolution

Central to this holistic framework is software evolution. A software evolution

system must provide strong version control of all artifacts produced during system

development as well as track the dependencies of artifacts. In small projects (which, as a

rule of thumb [MCBR02] characterizes as requiring less than 100 man-years of effort) it

is less expensive to scan through the application for the impact of a change than it is to

slow the project down by insisting on complete requirements traceability. However, for

large software engineering projects requiring over 100 man-years of effort, the trade-off

is exactly the opposite. Traceability of all requirements must occur because it is

prohibitively expensive to filter through all of the design documents for the impact of a

change [MCBR02].

In distributed development environments, an evolution control system must

support collaboration between multiple users at multiple sites, support concurrent updates

that split development threads into parallel variants, provide mechanisms for notification

when changes made by one developer affect the work of another, and when appropriate,

provide guidance for decoupling or serialization when on-going work of one developer

would be counter-productive to attempted work by another. The artifacts to be controlled

in the holistic framework vary in both purpose and format. Examples include

organizational policy and vision documents, business case documents, development

plans, evaluation criteria, release descriptions, deployment plans, status assessments,

user's manuals, requirements and specifications, customer interviews, meeting minutes,

code, software documentation, software architecture documentation, unit tests, test cases,

and test results. The formats of these artifacts include data base entries, text documents,

spreadsheets, images, drawings, audio files, and video clips. A long-term goal of the

HFSE is to establish positive control and integration over this diverse set of information.

By relating inputs and outputs of various software process models through an

evolution interface that attaches and records the dependencies among evolution artifacts,

information required by various processes can be automatically generated and obtained as

needed. Such a model requires interaction between a GUI, an evolution control

component, and an object model component. The holistic framework can be viewed as

 15

an abstract layer of activity that interacts with subordinate software development tools via

middleware communications mechanisms (see Figure 3).

Figure 3 Holistic Model of Software Process Interaction

In the HFSE, the software engineer does not serve as a central bridge between

subordinate software development tools, in contrast to Figure 2. However, [MCBR02]

pointed out earlier that totally removing the engineer from the development process and

automating all central processes is impossible. Thus, the HFSE as presented in this

dissertation will only partially achieve the configuration shown in Figure 3.

The Evolution Model and Object Model interact with subordinate software

development tools and processes. There are numerous research considerations that must

be addressed when establishing this higher-level holistic framework. These include

identifying standards for representation and interpretation of information, establishing the

medium of communications, accounting for process order, providing missing data,

accounting for ambiguity of inputs and outputs, accounting for conflict resolution

between models, and providing for extensibility.

The evolution interface was developed so that it can automatically deploy a range

of artifact dependencies throughout the lifetime of a particular software project. The

interface was established by extending the preexisting Software Evolution model

[HARN99c] with Quality Function Deployment (QFD) to introduce a continuum of

 16

dependencies between software artifacts [HAUS88] [HAAG96]. The preexisting model

relies on predefined artifacts and limited dependency tracking. A QFD continuum

separates relevant dependencies/priorities from noisy data and is an improvement over

the previous model [HARN99c] that only provided primary and secondary dependencies

with no articulation as to importance or strength of the dependency to the rest of the

design. The HFSE also distinguishes the types of the dependencies and provides

semantics and standard interpretations for the dependencies to enable tools to take

automatic actions based on them. These extensions improve the vertical, horizontal, and

temporal dependency graph between software artifacts (e.g. horizontal: requirement 1.2

to requirement 1.2.1; vertical: specification 1.2 to code segment 3.4; temporal: reuse

component 4.2 of version 1.0 to reuse component 4.2 of version 1.1).

2. Object Model

The interaction framework between the subordinate process models and the

extended evolution model was constructed using the Object-Oriented Model for

Interoperability (OOMI) for resolving representational differences between

heterogeneous systems [YOUN02b]. This approach establishes a high-level Federation

Interoperability Object Model (FIOM) that facilitates the interaction between the objects

of existing heterogeneous systems. By establishing such an object federation between

existing process models (or their tools) and then integrating that federation with the

extended evolution model, inputs and outputs between the subordinate models (or tools)

are available to each other while at the same time reporting interaction to the extended

evolution model. The framework ontology provides mappings between the subordinate

models that preserves those properties that the associated tools depend on. This research

helps clarify some of the tradeoffs between interoperability via conformance to a single

global data standard versus the use of multiple representations, ontologies, and

translations as supported by the FIOM approach. This approach appears viable because

global agreements on standards are nearly impossible to achieve in complex domains like

software development, and they appear to be unnecessary. The FIOM ontology is used to

identify the localized agreements and correspondences necessary at each tool boundary.

This approach works because the localized agreements are independent of each other and

each is much simpler than the effort required to establish a global data standard. In

 17

addition, this approach accommodates local representations that are optimized for

particular tools.

Once the evolution model was extended and an interaction framework

established, it was possible to improve the efficiency and effectiveness of software

development in a number of ways. First, the entire process of software development

became more automatic. As long as model/tool inputs and outputs are supplied through

the holistic model, different tools were able to interact automatically, with less

involvement by the software engineer. Second, because all artifacts within the holistic

model are tracked together as a large dependency graph, it was possible to extract select

"slices" of the dependency graph for particular purposes, allowing "focused" software

development. For example, since the holistic model interacts with existing process

models for software risk management, it was possible to extract a "slice" of the entire

dependency graph (a slice that represents the greatest risk) so that prototyping and

analysis effort was not wasted on developing artifacts that were already well defined,

understood, and/or were successfully implemented in previous versions.

3. The Ideal HFSE
This dissertation research represents an initial investigation into the characteristics

needed to establish the HFSE. As such, it is useful to consider all the ideal characteristics

of a Holistic Framework and then to discuss that subset of these characteristics that will

actually be addressed (in whole or part) in this initial investigation.

a. Generic
The HFSE should be generic and non-proprietary. The framework should

allow any model or tool to be incorporated. The framework should not be established

solely for use with a specific group of tools.

b. Real Tools

The HFSE should support real software development tools. The

framework should not be established simply to support research/laboratory software

development tools but must account for tools used to build real software.

 18

c. Process Independent

The HFSE should be independent of the software development process.

The framework should be of benefit irrespective of the software process models

employed..

d. Domain Independent
The HFSE should be applicable to linking together tools irrespective of

the software domain to which they are applied.

e. Extensible
The HFSE should be extensible. Not only should it be possible to include

new process models or tools by using the framework, but it should also be possible to

modify or update the attributes of the framework based on new technologies or new

attributes required by new process models. The ideal HFSE will not have attributes that

must be modified when it is extended - the goal is to enable extensions that refer to only

adding more attributes, without changing the information you have, except possibly

dropping some that may not be relevant in some contexts.

In order to maximize profit, software applications are required to

effectively operate for years. Such longevity requires consideration of software tools and

languages that also have similar longevity -- or if that is not possible, then consideration

must be made to provide a stable long-term development environment in which tools are

replaced when required. [MCBR02] states:

Long-lived applications require long-lived development tools… A key
question that needs to be asked when considering long-lived applications
is whether your development tools are likely to remain stable for the
lifetime of the application. This question can be really tough to answer,
but we need to start thinking about it because the 1990s were littered with
tools that have not survived. How would you act differently if your users
insisted that the application has to be useable for the next 20 years, just
like any other capital asset?

Thus, the HFSE should provide an environment within which tools can be switched out

or replaced to provide developers a long-lived, stable support environment for long-lived

applications.

 19

f. Improve Time to Market

Use of the HFSE should improve the likelihood that software is produced

in a timely manner. It should be possible to demonstrate that application of the HFSE to

a set of development tools will actually decrease the amount of time that is required to

produce and implement specific software functionality of interest.

g. Decrease Cost of Development
Use of the HFSE should decrease the cost of developed software. It

should be possible to demonstrate that application of the HFSE to a set of development

tools will actually decrease the cost required to produce and implement the target

software functionality.

h. Improved Quality

Use of the HFSE should increase the quality of developed software. It

should be possible to demonstrate that application of the HFSE to a set of development

tools will actually produce software that is of better quality than software produced by

tools that have not been subject to integration by the HFSE.

i. Easy to Use and Enhances Productivity

The HFSE should be intuitive and easy to use. It should be possible to

demonstrate that the HFSE is easy to use with attendant high-levels of productivity.

4. Scope of the Dissertation Research
Of these ideal HFSE characteristics, only items “a” through “e” will be directly

addressed and confirmed by this dissertation research. Items "f-i" will be discussed in the

dissertation, but formal validation of these characteristics is left to future research.

D. CONTRIBUTIONS PROVIDED BY THIS DISSERTATION

1. Accomplishment of the Research Goal
This dissertation provides confirming evidence of the research hypothesis. In

particular, this dissertation demonstrates the following:

a. Construction of the HFSE is Feasible
It is feasible to establish a Holistic Framework for Software Engineering

that consists of an extended Software Evolution model integrated with a Federation

Interoperability Object Model of subordinate software development models and tools.

 20

b. HFSE Artifacts Can be Described Mathematically

It is feasible to mathematically describe the HFSE constructs.

c. The HFSE Increases Software Tool Interoperability

 The application of the HFSE to a sample set of software development

tools (i.e., Requisite®Pro and SEATools) increases the interoperability (i.e., data

exchange and joint task execution) of the selected set.

2. Other Original and Unique Contributions
While the most important original contribution to the field of software

engineering that this dissertation provides is to establish the feasibility of the HFSE, there

are several other contributions.

a. Develop a Software Development Tool Ontology Construction
Methodology

This dissertation provides the blueprint for building a software

development tool ontology. The methodology was adapted from other sources (notably

[USCH96]), but was tailored for identifying and capturing the unique characteristics of

software development tools. This methodology can be used to add software development

tools to a tool ontology.

b. Construct a Pilot Software Development Tool Ontology
This dissertation presents a partial software development tool ontology.

Three separate ontologies (and their inter-relationships) are presented: a high-level

software development tools ontology, an ontology that describes the Common Object

Model (COM) interface of Requisite®Pro, and an ontology that describes important

(from an interoperability viewpoint) classes from SEATools. Together, these ontologies

form the basis for the Federation Entities in the software development tool FIOM.

c. Adapt QFD Methodology to Deploy Software Dependencies other
than Quality

 This dissertation demonstrates a methodology for deploying definable

software dependencies throughout a software development effort. To date, the main

software dependency deployed using QFD has been a customer's view of quality. While

the theoretical deployment of other dependencies (e.g., cost, reliability, new technology,

 21

security) have been suggested by other authors, there are no published proposals for

deploying these other dependencies. This dissertation presents such a proposal.

d. Apply OOMI to the Software Development Tool Domain

The OOMI was applied to an entirely different domain (other than C4I

systems) by establishing a FIOM between software development process models and

tools. This effort provided an appreciation of the difficulties in applying Young's

methodology to a set of legacy heterogeneous software systems.

e. Use the HFSE to Provide Perspective Views of the Development
Effort

 This dissertation provides tool support that provides user defined

perspective views of particular aspects of a software development effort. These views

allow the user to glean important decision support information from the underlying

hypergraph of the software development effort. Such decision support can be later shown

to provide software process and product improvements.

E. ORGANIZATION OF THE DISSERTATION

This dissertation is organized to progressively take the reader from the theory

underlying the HFSE, through the research that led to the development of the framework,

and through the efforts to provide tool support for the effort. The dissertation culminates

in the application of the framework against a non-trivial software development scenario.

Chapter II presents a survey of previous work on developing interoperability

among heterogeneous software development tools. The chapter consists of two main

sections. First, a "Foundation Work" section identifies the key research upon which the

HFSE research is founded. Examples of this foundation work include software evolution,

the Relational Hypergraph model of software evolution, Quality Function Deployment,

and the Object-Oriented Methodology for Interoperability. The second major section in

this chapter covers "Related Work" -- the areas of research that are in some way in

competition with the premise of the HFSE. Examples of related work include software

development tool suites, unified processes, and other efforts to form Integrated Software

Development Environments (ISDEs).

 22

Chapter III provides the methodology and work associated with establishing the

software development tool ontology upon which the HFSE depends. It lays out the

methodology used to identify and organize the terminology of the software development

tool domain. It presents the captured ontologies of the two specific tools used in the

HFSE research.

In Chapter IV the integration of the Relational Hypergraph Model of Software

Evolution and Quality Function Deployment is discussed. The chapter explains the

theory behind both models and lays out the mathematical relationships of their integration

and the mathematical basis upon which the user-defined perspective views are formed

from the underlying hypergraph of the software development effort.

Chapter V introduces how the OOMI methodology was applied to the domain of

software development tools. It presents the construction of a partial FIOM between

Requisite®Pro and SEATools. It discusses the difficulties associated with intralingual

translation approaches and what is required to extend the software tool FIOM to include

other development tools such as Rational Rose.

Chapter VI presents the resulting HFSE. It describes the HFSE and lays out the

way in which a software engineer would apply the HFSE in a given software

development scenario. The chapter discusses how the HFSE could be extended to

incorporate additional software development tools. Finally, the chapter presents the

theory behind how the HFSE could be applied in a given situation to provide an engineer

with decision support information related to the development effort.

Chapter VII introduces the tool support of the HFSE (CASES). It explains what

version 1 of CASES did and provides details on the many enhancements to CASES so

that it now supports application of the HFSE. Examples are shown of how to graphically

develop project schemas, register components with external software development tools,

construct complex QFD dependency matrices and finally, take slices of the underlying

Relational Hypergraph to provide a meaningful subgraphs that form the basis of the

decision support the HFSE provides.

 23

Chapter VIII presents the Hello World and CARA Infusion pump software

scenarios. The chapter lays out how the HFSE was applied in the scenarios to provide

confirming evidence of the dissertation hypothesis.

Chapter IX concludes the dissertation by providing a summary of the

contributions of the work as well as pointing researchers towards areas of future

investigation.

 24

THIS PAGE INTENTIONALLY LEFT BLANK

 25

II. PREVIOUS WORK

A. CHAPTER ORGANIZATION
This chapter is organized into two main sections: "Foundation Work" and

"Related Work." The "Foundations Work" section focuses on that previous research that

establishes the underpinning of the investigations presented in this dissertation. The

purpose of the section is to provide a starting place, background, and basis upon which

the contributions of this dissertation are founded. The "Foundation Work" section is

organized into the following areas:

• Approaches to Software Evolution,
• The Relational Hypergraph Evolution Model,
• Quality Function Deployment,
• The Object-Oriented Model for Interoperability, and
• The Use of Ontologies in Establishing Interoperability.

The "Related Work" section of this chapter presents research that attempts to

accomplish some of the same aims and objectives as those resolved in this dissertation.

The presentation in this section compares and contrasts these other works with the work

and accomplishments presented in this dissertation. The "Related Work" section is

organized into the following areas:

• Software Development Tool Suites,
• Unified Software Development Processes,
• Integrated Software Development Environments,
• Previous Use of Ontologies in Software Development, and
• Previous Use of QFD in Software Development.

Together, these sections provide a comprehensive literature review of the topics

presented in the dissertation and clearly show the basis upon which this work is founded

as well as describing how it differs from previous efforts.

B. FOUNDATION WORK

1. Approaches to Software Evolution
Over the years "Software Evolution" has become a recognized and well-

established subfield of software engineering. [LUQI89] states that: "Software evolution

 26

refers to all activities that change a software system, including responses to requirements

changes, improvements to performance or clarity, and repairs for bugs." This implies

that software evolution includes more than just software maintenance, requirements'

traceability, and configuration control; it is a recognition that a software product is

subject to long-term (birth to retirement) modification in order to meet changes in

environment and changes in customer needs. It is also a recognition that all aspects

related to this continual, progressive, and evolutionary change may have an impact on

how much change is possible, that rate at which change is possible, and how successful

that change is in the eyes of the customer.

In his seminal work in researching the problems in the evolution of IBM's

software products (and the evolution of the OS/360 in particular), Lehman proposed a

new paradigm for dealing with the problems of size and complexity in ever-evolving

software systems [LEHM69]:

The [software crisis] implies the need to replace existing unstructured
technology-oriented programming methodology by an overall total-
process-oriented methodology. This is seen as providing a structure to the
process. This structure must be designed to guide the programming
process and enable it to achieve any desired combination of the
performance, reliability and cost for a minimum in human effort and
maximum machine support... By creating an appropriate structure for the
process itself, complexity and cost are reduced, and human and machine
effectiveness simultaneously increased.

It is interesting to note that even as early as 1969, Lehman recognized the need for taking

a holistic approach to software development, recognizing that it was not enough to simply

improve individual aspects of the software development process or individual software

development tools. He stated that the software development process "is itself a 'system'

involving many people, many phases, many components and many requirements. A

characteristic feature of systems is that local subsystem optimisation does not lead to

system optimisation. Thus investigation and improvement of a part of the process

without consideration of the process as a whole demands extreme care" [LEHM69].

Consequently, it is through the development of holistic development environments (such

as that provided by the HFSE) that significant progress can be made in providing

 27

enduring customer satisfaction in the face of the inevitable evolutionary change that

accompanies any software project of significant size and complexity.

Much of Lehman's work has focused on treating large, long-duration software

products as feedback and control systems subject to real-world forcing and damping

functions (e.g., new customer demands, developer's insertions of new code and

modification of existing code, budgetary constraints, changing technology, etc.). To

illustrate Lehman's concept, consider an imaginary software system from birth to death,

as depicted in Figure 4.

Time

C
us

to
m

e r
's

V i
ew

 o
f U

til
ity Constant level

of Customer
Satisfaction

Customer's Actual
Satisfaction based
on Software Performance

Figure 4 Software Evolution as a Feedback and Control System

From the developer's viewpoint, the developer is always trying to attain and maintain a

constant level of customer satisfaction. From the customer's viewpoint, that constant

level of satisfaction translates into an ever-increasing amount of demanded utility from

the system. While over time, demanded utility is shown here as linearly increasing, this

could actually be increasing non-linearly based on market competition and new user

needs. The software that is delivered determines the customer's actual satisfaction level

(how useful it is in comparison to the customer's needs, how it matches the customer's

expectations, etc.). At the same time the actual level of satisfaction is negatively

influenced by both internal factors (e.g., defects, poor documentation, etc.) and by

external factors (e.g., competitor's products that are perceived to be better, obsolesce of

hardware, etc.). Unfortunately while these internal and external forces are not necessarily

bounded, it remains incumbent on the developer to account for them anyway: "Exploiting

 28

this multidimensional unboundedness is an inevitable consequence of computer usage"

[LEHM98].

Much of this "unboundedness" is caused through imprecision and obsolescence of

natural language expressions of stakeholder desires, as well as the problem of stated but

misunderstood, improperly stated, or unstated assumptions. [BERZ91] points out that one

of the main challenges of software evolution in traditional contexts is the lack of accuracy

in requirements, specifications, and design documents. [LUQI89] continues by pointing

out that the developer must have precise documentation to reliably change the system.

Unfortunately in the case of older systems, such documentation (other than the source

code) typically does not exist, has been lost, or is obsolete because of the large amount of

time and effort required to manually create and maintain it. In the case of assumptions

[LEHM98] observes that:

The sources and nature of the assumptions are countless (I have estimated
that a typical program has about one real-world assumption for every 10
lines of code). Some of these assumptions will remain valid throughout
the system's life; others will be invalidated by subsequent changes in the
application or its operational domain. Still others will fall somewhere in-
between: valid in some circumstances, but leading to unacceptable results
or behavior in others. Such invalidity generally remains undetected until a
problem arises or a disaster…

An additional source of unboundedness arises from what [LEHM91] terms as "Gödel-

like" and "Heisenberg-like" uncertainties. In Gödel-like uncertainty, the real-world

software system (including its users and developers) can be viewed as a model of some

desired functionality operating in an infinite universe. The users and developers (who are

actually part of and internal to the model) cannot completely know the properties of the

model and its interaction with the external universe -- their knowledge is incomplete. In

Heisenberg-like uncertainty, implementation of the software system changes the

operating environment of the system. Once users gain first-hand experience of the

system, their expectations of what the system is supposed to do fundamentally change.

Unfortunately, total control of assumptions and uncertainty can never be achieved; but,

"there can and must be significant improvement in the manner in which such matters are

controlled in current industrial practice" [LEHM91].

 29

One way to tackle this problem is to do a better job of recording application and

domain boundaries. [LEHM98] suggests that such decisions should be recorded in a

structured fashion that also displays the recognized dependencies and relationships

between them. Developers must recognize, capture, and record assumptions, whether

explicit or implicit, in design and implementation decisions. They must also record any

dependencies and the relationships between them. The HFSE provides the developer a

framework for recording these assumptions and dependencies. But it is not enough to

simply record these assumptions and relationships, proposed changes to a software

system must be examined in relation to the assumptions to ensure that intended behavior

is achieved.

Lehman's continuing and voluminous body of work in the field of software

evolution has led to the development of what are now known as Lehman's Laws of

Software Evolution, summarized in Table 1 below [LEHM97].

(Yr)

Title Description

I
('74)

Continuing Change Software systems must be continually adapted else
they become progressively less satisfactory.

II
('74)

Increasing Complexity As a software system evolves its complexity increases
unless work is done to maintain or reduce it.

III
('74)

Self Regulation A software systems' evolution process is self-
regulating with distribution of product and process
measures close to normal.

IV
('80)

Conservation of
Organizational Stability
(invariant work rate)

The average effective global activity rate in an
evolving software system is invariant over the product
lifetime.

V
('80)

Conservation of
Familiarity

As a software system evolves all stakeholders (e.g.,
developers, sales personnel, users, etc.) must maintain
mastery of its content and behavior to achieve
satisfactory evolution. Excessive growth diminishes
that mastery. Hence the average incremental growth
remains invariant as the system evolves.

VI
('80)

Continuing Growth The functional content of software systems must be
continually increased to maintain user satisfaction over
their lifetime.

VII
('96)

Declining Quality The quality of software systems will appear to be
declining unless they are rigorously maintained and
adapted to operational environment changes.

 30

(Yr)

Title Description

VIII
('96)

Feedback System Software evolution processes constitute multi-level,
multi-loop, multi-agent feedback systems and must be
treated as such to achieve significant improvement
over any reasonable base.

Table 1 Lehman's Laws of Software Evolution (after [LEHM97])

These "laws" and years of observation have led Lehman and others involved in

the FEAST (Feedback, Evolution, and Software Technology) Research Group to begin

work in trying to define a theory of software evolution, consistent with empirical

evidence collected to date [LEHM00]. FEAST has been primarily concerned with the

"properties of the evolution phenomenon, the what and the why of evolution." The group

has sought to understand the software evolution phenomenon by applying the scientific

method of observation, measuring, modeling, interpretation, and hypothesis generation

with a primary goal to "determine the underlying causes, attributes and practical impact

of evolution" on software development processes and products. This is different than the

view taken in this dissertation in which the concern focuses on "the how of evolution"

and in particular on how the improvement and management of the evolution process can

lead to higher productivity, improved quality, faster development, greater adaptability

and reliability, etc. "Those interested in the why and the what see evolution as the sum

total of activity required to maintain stakeholder satisfaction over application lifetime.

Those that focus on the how see it as the process to achieve satisfactory, controlled and

disciplined software change" [LEHM00].

In summary, there are five important concepts in how others have tackled the

domain of software evolution that are important to this dissertation. Each of these is

listed below with the implication to the HFSE highlighted.

a. Inevitability of Evolution

Software of any significant size or complexity will inevitably require

modification in order to continue to provide customer utility. HFSE implication: The

HFSE tracks and records many artifacts and potentially even more relationships between

 31

artifacts over great periods of time. The framework provides the software engineer an

easy and efficient way to "browse" through these artifacts and relationships.

b. Holistic Approach

Improvements to individual parts of the software development process

without regard to the whole process do not guarantee overall improvement in process or

product. HFSE implication: The HFSE is holistic in nature. It is able to track artifacts

and relationships throughout the entirety of the software development effort. It provides

the engineer the ability to view specialized information across this entirety.

c. Assumptions and Uncertainty
Imprecise and inadequate documentation, uncertainty and incompleteness

of software modeling, and unstated/misstated/obsolete assumptions create a natural decay

in software quality. Lehman's 2nd, 6th, and 7th Laws imply that preventing the decay

requires more and more of the total software maintenance effort over time. HFSE

implication: The HFSE provides the engineer the ability to recognize, capture, and

record assumptions, whether explicit or implicit, in design and implementation decisions.

Furthermore the HFSE provides the engineer the ability to record assumption

dependencies and the relationships between the assumptions and other software artifacts.

It is not enough to simply record these assumptions and relationships, the HFSE allows

the engineer to examine proposed changes to a software system in relation to the

assumptions to ensure that intended behavior is achieved. Unfortunately, the HFSE does

not directly correct the "unstated or mis-stated" assumption problem; however, it does

provide the engineer a powerful framework for isolating and then identifying such

problematic assumptions.

d. Validation Against Assumptions

Software engineers must have better mechanisms that allow them to

continually validate the current state of the software against previously stated (and

unstated/mis-stated) application boundaries and assumptions. HFSE implication: the

HFSE provides the engineer the ability to select specific subsets of information traceable

to the current design. These "views" give the engineer insight into how their current

software artifacts match up against previously produced artifacts (including assumptions).

 32

e. Views of Evolution

Software Evolution can be seen from two points of view: those interested

in why evolution occurs and what causes it, and those interested in how evolution can be

managed to produce improvements to software processes and products. HFSE

implication: The HFSE seeks to implement the second view of evolution. It provides a

framework by which software processes and products can be improved (however, recall

that this dissertation only seeks to prove the feasibility of the HFSE and proof of

improvement is considered future research).

The implication of these five concepts to the development of the HFSE is

significant. Software evolution forms the core of the framework providing the software

engineer a mechanism by which he can record assumptions, relationships, and

dependencies and then easily isolate important decision support information.

2. The Relational Hypergraph and CASES

a. Brief History of the Hypergraph

Claude Berge first introduced the hypergraph in 1960 as a way to

generalize graphs [BERG89]. In particular, he defined a hypergraph H as shown in

Equation 1.

 1 2

1 2

 where
 { , , , } is the set of (or nodes)
 { , , , | for 1, , }
 is the set of

n

m i

v v v n vertices
E E E E i m

m hyperedges

=
= ⊆ =

H = (V, E)

V
E V

…
… …

Equation 1

An undirected hyperedge Ei represents a relationship involving all the vertices in the

subset of Ei. Given this definition, it is easy to see how this generalizes previous

definitions of graphs, because a typical graph where each undirected edge connects two

nodes would be the special case of a hypergraph such that the condition in Equation 2

holds.

 2 iE i= ∀ Equation 2

In a directed hypergraph, two additional functions are defined on the hyperedges (T(E)

and H(E)) to distinguish the "tail" vertices of the hyperedge and the "head" vertices. It is

 33

then straightforward to produce an incidence matrix A = (aij) defined by Equation 3 that

records all necessary information about the hypergraph.

1 if T()

 1 if H()
0 otherwise

i j

ij i j

v E
a v E

− ∈
= ∈

 Equation 3

Figure 5 illustrates a directed hypergraph with its associated incidence matrix.

1

2

3

4

5

6

7

8

E1
E2

E3

E1 E2 E3

1 -1 0 0
2 -1 0 0
3 -1 0 0
4 1 -1 0
5 1 0 0
6 1 0 -1
7 0 1 0
8 0 1 1

Figure 5 Directed Hypergraph with Incidence Matrix

Since the introduction of hypergraphs, hypergraphs have been used in

numerous cases in combinatorics and computer science and more recently in the area of

software evolution.

 b. The Relational Hypergraph (RH) Software Evolution Model

Harn, in his PhD dissertation [HARN99c], extends the work of several

others [BORI86], [LUQI90], [BADR93], and [IBRA96] in establishing a Relational

Hypergraph model (RH model) to describe software evolution. This model establishes

dependencies and links between key activities/artifacts of a software development cycle

and also between sequential iterations of cycles. The model allows the development of

tools to manage both the activities in a software development project and the products

that those activities produce. An example of such a tool is the Computer Aided Software

Evolution System (CASES) developed at the Naval Postgraduate School in support of

Harn's work.

CASES, programmed in Java, is a software system that performs the

following key functions during software evolution: control, management, formation,

 34

refinement, traceability, and assignment. CASES manages and controls all of the

activities that change a software system and the relationships among these activities.

CASES is based upon the relationships in the evolutionary process model shown in

Figure 6.

Figure 6 Software Evolution Processes with CASES (from [HARN99c])

Underlying CASES are software evolution models that use the relational hypergraph to

mathematically characterize the relationships between software activities and artifacts.

Harn adapts Berge’s hypergraph [BERG89] to establish a hypergraph model,

evolutionary hypergraphs, and relational hypergraphs as follows [HARN99c]:

A hypergraph model represents the evolution history and future plans for
software development as a hypergraph. Hypergraphs generalize the usual
notion of a directed graph by allowing hyperedges, which may have
multiple output nodes and multiple input nodes.

An evolutionary hypergraph is a directed, labeled hypergraph that has
been annotated with the attributes of the evolutionary components and
steps of a software development process.

 35

A relational hypergraph is an evolutionary hypergraph in which the
dependency relationships between components and steps can have a
hierarchy of specialized interpretations.

In the Relational Hypergraph, activities and artifacts affected by the

software evolution process are called software evolution objects and consist of "Steps"

and "Components." Harn identifies eight types of steps: the software prototype demo

step (s-C), issue analysis (s-I), requirement analysis (s-R), specification design (s-S),

module implementation (s-M), program integration (s-P), Software product demo (s-O),

Software product implementation (s-Pd). There are eight types of components:

Criticisms (C), Issues (I), Requirements (R), Specifications (S), Modules (M), Software

prototype programs (P), Optimizations (O), Software product programs (Pd). The

Relational Hypergraph model uses a hierarchical refinement (top-level objects, refined

objects, atomic objects) to link these objects and establish dependencies (both primary

dependencies and secondary dependencies) between the objects.

Harn's work forms the basis for establishing a Software Evolution Model

as the core for the HFSE. By reworking the evolution model to become more extensible,

the Relational Hypergraph becomes a very useful mathematical construct for establishing

dependencies between evolution artifacts.

Harn's work has two primary weaknesses when viewed from a perspective

of its usefulness to developing a Holistic Framework for Software Engineering.

(1) Lack of Generality & Extensibility. Harn's work was

established for a single process model -- the evolutionary prototyping model. While he

demonstrated the use of this model on different domains of systems (C4I and embedded

real-time systems) he did not demonstrate its applicability for use with other main-stream

process models (e.g. spiral development, waterfall, Win-Win, etc.). Also, while the

original graph model is extensible [LUQI90] (Harn's model being one of those

extensions), Harn failed to provide a uniform method for extending the base model to

support new process models. While it is fairly easy to add and modify components,

steps, and attributes in his model, many of the rules governing their relationships have to

be modified as well. The lack of generality is perhaps the reason why the model has not

been widely adopted in industry.

 36

Overcoming the lack of generality in Harn's evolution model

requires that the model be redone within a generic framework. Constructs are included in

the HFSE that allow the software designer to "build" the objects, components, steps, and

attributes that the designer actually uses in their specific software development process

and then to link these objects together through establishment of dependency relationships

using QFD.

(2) Parametrical dependencies. Harn established the Relational

Hypergraph model to only account for a limited number of dependencies between

artifacts (e.g. Primary-input driven and Secondary-input driven). Unfortunately, this

does not match the real world in which software artifacts are related through a continuum

of dependencies. The HFSE defines and implements a small finite set of distinct

meanings for dependencies.

Embedding QFD into the model solves this shortcoming. QFD

allows for and keeps track of a continuum of dependencies between objects (in fact, it is

the continuum of dependencies that form the core of the QFD methodology).

3. Quality Function Deployment (QFD)

a. QFD History and Cited Benefits

QFD was originally developed in Japan in the mid 1960's as a

"requirements based" methodology that ensures that the "Voice of the Customer" is

deployed throughout the product design and manufacturing process. The Japanese

application of QFD in the 70's is often cited as a primary factor that allowed them to

dominate the global automobile industry for almost a decade and in the early 80's it was

the US application of QFD that allowed the US automobile industry to recapture some of

its lost global market-share [CLAU88] [HAUS88]. Since then, the use of QFD has been

extended to the entire US manufacturing industry as a means of ensuring products meet

customer requirements.

QFD establishes a conceptual map that provides the means for inter-

departmental functional planning and communications [HAUS88]. The customer's own

words and phrases are captured and used whenever possible. It is these words that are

simultaneously translated by the designers, architects, programmers. One of the many

 37

benefits of QFD is to enhance cross communications between departments in the same

development effort [COHE95]; consider Figure 7.

Sales

Market
Research

Purchasing

Quality
Assurance

Service
Deployment

Service
Development

Manufacturing

Product
Design

Advanced
Development

Marketing

QFD

Figure 7 QFD Enhances Cross-Functional Communication (after [COHE95])

Recall the likeness of this diagram to the traditional software development diagram

presented earlier (Figure 2). Because QFD acts a central communications mechanism for

deploying the customer's vision of a quality product across different functional areas in a

company, in many ways, QFD can be used to perform much of the dependency

"bridging" that has traditionally rested on the shoulders of the software engineer.

QFD can also help to improve product development processes. All too

often, specialists in particular areas focus on improving their particular area of the

process while losing sight of the holistic nature of the development effort. [CLAU88]

states:

When specialists polish their own specialties within their own segments,
their activities may appear very elegant and impressive. But all too often,
they simply lead to “institutionalization of waste.”

An example of this was the highly touted development of automated storage and retrieval

systems (AS/RS) that were to revolutionize the warehousing industry. While such

systems significantly improved warehousing, they became virtually useless with the

advent of "Just-in-Time" inventory processes in which the overall goal was not to

speedup warehousing activity, but to eliminate it altogether. What is needed in such

 38

cases is greater cross communication between development segments -- a need that QFD

is designed to address.

b. Software Quality Function Deployment (SQFD)

While QFD has been widely and successfully integrated into much of the

U.S. product industry, the same cannot be said of the integration of QFD into the U.S.

software industry. There are a number of reasons for this lack of integration. A Japanese

pioneer of QFD, [AKAO90] comments that "the quality function deployment method for

software development is not yet well established" and that "examples of the use of quality

charts [QFD matrices] for determining the quality plan and quality design are also scarce.

Identifying critical functions deployed for individual software is a challenge to be

addressed in the future." He states that the much of this problem stems from a general

lack of quantitative measurement methods and ways to test and measure software quality.

Measuring the frequently cited classifications of software quality characteristics

(including objectivity, operability, performance, reliability, usability, confidentiality,

security, expandability, interchangeability, reusability, and continuity) has proven very

difficult and is a key reason that there has not been more effort to integrate QFD into

software development processes.

In discussing the use of QFD for embedded systems, [THAC90] attributes

the lack of integration of QFD into software processes partly because of incompatibility

between the terminology used in QFD and the terminology used in software. Also, that

while many software companies are trying to implement simultaneous (or concurrent)

software development processes, they are failing because of a lack of a definable

concurrent engineering process. The reason seems to be the lack of a consistent and

properly documented process that covers all aspects of software development while

simultaneously addressing the discipline of embedded systems development and is tied to

the organizational structure of the companies constructing the embedded software.

While Data Flow Diagrams and Control Flow Diagrams are used widely in embedded

systems design, they have a number of shortcomings [THAC90]:

• They do not show which components map to which customer
requirements.

• They do not show potential conflicts in requirements.

 39

• They do not show the positive or negative impact of one design
element on a particular requirement.

• They do not show the positive or negative impact of one design
element on another design element.

• They do not show which method, tools, and procedures are used
for various parts of the design.

• They do not show how the resource plan maps to the development
effort.

Existing requirements analysis and specification methodologies (e.g. structured analysis

and design, object modeling techniques) do not clearly identify how software

development tasks implement what customers want [LIUX00]. Also, existing

methodologies fail to identify and resolve conflicts between customer requirements.

QFD is a methodology that overcomes each of these challenges when used prior to the

creation of Data and Control Flow diagrams. [THAC90] goes further and points out that

for QFD to be properly integrated into existing software design processes, a lot more

automation of the process is needed. In particular he points out the following:

• Product development information should be freely and seamlessly
available across all implements.

• Software Engineers need to be able to 'browse' through engineering
data at will and create new relationships where appropriate.

• Other designer should be able to trace back and determine
engineering trade-offs, reasons for design decisions, etc.

It is these very issues related to automation that embedding QFD into the Relational

Hypergraph model of Software Evolution (forming the HFSE) is designed to solve.

While QFD has not yet been widely integrated into software development,

there are cases when QFD has been used successfully in software development.

[LIUX00] states:

It [SQFD] has been applied to improve software quality in many large
organizations, such as DEC, AT&T, Hewlett-Packard, IBM and Texas
Instruments… SQFD has been utilized in developing various types of
software products, such as operating systems, embedded software,
management information systems, decision support systems, network and
transaction processing systems. SQFD has been beneficial in developing
new software products and upgrading or enhancing existing software
products. It helps to enhance communication between customers and
software developers and testers.

 40

In the cases where QFD has been used for software development, cited

benefits of SQFD include the following [HAAG96]:

• Fosters better attention to customers' perspective.
• Creates better communication among departments.
• Provides decision justification.
• Quantifies qualitative customer requirements.
• Represents data to facilitate the use of metrics.
• Facilitates cross-checking.
• Avoids the loss of information.
• Reaches consensus of features quicker.
• Reduces product definition interval.
• Can be adapted to various Software Development Life Cycle

methodologies.

The benefits of SQFD appear to be synergistic and lead to fewer changes

in requirements specification, design, and code, and reduction in the number of defects

and less rework, and therefore, higher productivity [LIUX00]. As QFD was initially

invented in Japan, SQFD was also first invented and used in Japan -- initially to improve

the quality of embedded software. As reported in [ZULT93], one of the companies that

has incorporated SQFD into their software development processes is NEC's IC

Microcomputer Systems Company (NEC IC Micon) the first software organization to

win the Deming prize. During the period 1982 to 1987 the 1000 person software

organization was able to reduce shipped software defects from 45 to 0.5 defects per

million lines of executable code, increase their productivity by 5 times, increase sales by

5 times, thus increasing their market share by 20%, which in turn increased profit by 4

times.

QFD, when applied to software, allows managers to focus precious project

resources on the customer's high-value software elements and in the end, produce a better

software development process and a better (higher quality in the customer's eyes)

software product [ZULT92]. [LIUX00] states: "Software Quality Function Deployment

(SQFD) focuses on improving the quality of both the software development process and

the product." QFD can be used to deploy not only quality, but also technology, cost,

reliability, or any special concerns such as usability, reuse or security. The QFD

methodology provides both forward and backward traceability in the development life

 41

cycle. Because the QFD process is flexible, engineers can define other appropriate

deployments to address specific concerns of customers or the development organization

[ZULT93]. Yet, while [ZULT93] theorizes about the deployment of these other customer

concerns (dependencies other than quality), there is no evidence that any formal work in

establishing a methodology to deploy such dependencies has yet taken place. One of the

goals of the HFSE is do just that.

c. The Voice of the Customer
QFD, in its purest form, is designed to deploy the "voice of the customer"

throughout a particular design. The goal is to use the customer's own words to "deploy"

the customers' notions of what is of value in the product to every aspect of the

development effort of the product. However, there may be some ambiguity (e.g. what did

the customer mean by "easy to use?") and while it may take some time to ferret out

exactly what the customer meant by such a phrase, the time spent in identifying and

implementing the customer's intent will directly leads to a quality product. Key is for

designers and engineers to avoid interpreting customer phrases without clear

understanding of customer intent [HAUS88]. A designer or engineer's inference could

lead the development team to tackling problems that the customer deemed to be

unimportant.

The use of QFD in capturing and deploying quality throughout a software

product's lifecycle implies a shift in the traditional paradigm of what it means to have a

quality software product. [LIUX00] states that: "Software quality can be viewed as

conformance to software requirements from customers." Unstated in this quotation is the

fact that the customer might not have articulated many requirements and that these

requirements remain hidden until after an unsatisfactory product is delivered to the

customer. Traditional approaches to software quality have relied on Statistical Process

Control (SPC). The aim has been to minimize customer dissatisfaction by removing

software defects through appraisals, logging/correcting customer complaints, completing

software reviews/inspections/walkthroughs, and performing software testing. SPC aims

to minimize the amount of "negative" quality in software by removing such defects.

With the addition of error cause removal, it was hoped that through process

improvement, the generation of defects (and the likelihood that they would remain

 42

undiscovered until after the software was delivered) would decrease. This approach also

seeks to minimize the "negative" aspects of quality; however, such approaches do not

guarantee that any "positive" quality attributes still remain in the software. They only

ensure that the system is less bad, not necessarily good; consider Figure 8.

Positive
 Quality

Not good enough!
nothing wrong ≠ anything right

Zero
Defects

Negative
 Quality

To maximize value, understand the customer
and design positive quality into the software

I

Q+

Q-

To minimize defects, understand the cause
and remove them from the softwareTr

ad
iti

on
al

vi
ew

 o
f

Q
ua

lit
y

M
od

er
n

V
ie

w
of

 Q
ua

lit
y

Figure 8 The Quality Continuum (after [ZULT92, 93])

It is a necessary condition that defects are removed from the software, but

it is not a sufficient condition [ZULT92]. In addition to SPC, there must be mechanisms

built into the software development process that ensure that there are systematic,

controlled, and traceable means of ensuring that what the customer considers to be a

quality attribute is delivered in the final product. There must be an understanding of

exactly what is of value to the customer and then ensure that this value is deployed

throughout all aspects of the development effort. [ZULT90] notes that the application of

QFD to software will help to both prevent defects, but more importantly, to input positive

quality attributes:

Today software engineering using [SQFD] concentrates more on
maximizing user satisfaction from the software engineering process. The
focus is on preventing the causes of defects by a deeper understanding of
the user's true requirements -- starting with a careful study of user and
stakeholder wants, needs, and concerns. With [SQFD], you work
downstream to design quality into the system, and continuously work to
improve the software engineering process with innovation. This approach
seeks to maximize the users' complements (positive quality). Only strong
positives can make software so good that user boast about it -- the true test
of exciting quality.

 43

It is very typical for users to have difficulty in articulating all of their

requirements. It is the responsibility of the software engineer to "ask why five times" to

define and analyze at a fundament level the users' requirements [ZULT90]. The engineer

must ask why the customer does what he does, why he has the problems he has, and why

he is able to take advantage of particular opportunities. The engineer can only develop a

complete and consistent set of requirements after getting close to the customer and

understanding their wants, needs, and concerns. The engineer must get a sense of how

meeting particular requirements effects customer satisfaction. As reported in [AKAO90]

[COHE95] and [ZULT90, 92, 93] Kano et. al. provides a model (the Kano Model) that

characterizes requirements based on customer satisfaction (see Figure 9).

Normal
Requirements

 Exciting
Requirements

Expected
Requirements

satisfied
 user

fulfilled
expectations

expectations
unfulfilled

dissatisfied
 user

Figure 9 Kano diagram for Requirements (after [ZULT90])

Expected Requirements are the "must" features that a user expects. The

presence of these features meets their expectations, but their presence does not

necessarily satisfy them. Often, expected requirements are so basic that customers fail to

mention them until the software fails to perform an expected function -- the customer is

dissatisfied with the result. Normal requirements (sometimes called "revealed"

requirements [LIUX00]) vary in proportion to the presence of the feature. The more of a

normal requirement is present, the more the customer likes it. An example might be

 44

communications speed -- the faster a system is able to communicate, the more a customer

likes it. Exciting requirements are features beyond the users’ expectations and are often

hidden. The absence of these features generally does not cause any dissatisfaction,

because the user was not expecting the feature in the first place. Exciting requirements

represent significant opportunity for the developer because if the developer can identify

and implement these features, he will significantly add to the customer's satisfaction and

may fill an unfulfilled niche in the market. An example of an exciting requirement might

be the addition of a new feature enabled by a comparatively new technology of which the

user was unaware but the developer had used previously.

[COHE95] asserts that there are two major lessons that Kano's model

teaches us. The first lesson is that all customer satisfaction attributes are not equal. Not

only are some attributes more important to the customer than others; but, some attributes

are important to the customer in different ways than others. For example, requirements

that are "dissatisfiers" do not matter at all to the customer when they are met, but they

seriously detract from overall customer satisfaction when they are not met. The second

lesson is that as [ZULT92, 93] pointed out earlier, the old product quality strategy of

responding to customer complaints is inadequate; such complaints are likely to be caused

by the failure of a dissatisfiers requirement being met. A quality strategy based solely on

removing dissatisfiers can never result in satisfied customers.

The last note about obtaining the "voice of the customer" is that it is

generally not sufficient to read reports and conduct customer surveys. The engineer must

observe the customer in their workplace to get a true sense of the conditions and

requirements of the customer. In the Japanese application of QFD, this is termed as

"going to the gemba." As stated by [ZULT93]:

We must not be content with an abstract knowledge of the customers'
requirements, but acquire a gut-level understanding of the contexts of the
customers. Such knowledge does not come from studying a thick
requirements document, running focus groups, or facility conference room
meetings with customers. It comes only form going to the gemba.

Contextual Inquiry (CI) is another technique for gathering customer requirements at the

customers' workplace. [HRON93] reports that: "Digital [Corporation] has fostered a

 45

technique called Contextual Inquiry, in which the product developers visit the customer's

workplace and observe and interview various users while they are engaged in their

normal work activities." Also, [LAMI95] draws the parallels between "going to the

gemba" and "CI": "In CI, a fundamental principle is that users are to be studied in their

normal working context ('going to the gemba.') [sic] Users are studied as they perform

ordinary work tasks. Analysts following the CI technique observe users working and

record both what the users do and how they interact with their work environment."

Whether it is Contextual Inquiry or "going to the gemba", a key portion of the QFD

process involves the engineer obtaining a fundamental understanding of all of the

customers' requirements by witnessing first-hand the customer in their work environment.

d. Steps in the QFD Process
QFD ensures that the "Voice of the Customer" is deployed beyond the

requirements capture phase of the design and is fully embodied in the product

specification, architecture, and production phases of the process. QFD is a stepwise

process with results recorded in matrices that are sometimes known as "Houses of

Quality" because of the characteristic "house" shaped matrix for recording QFD

relationships (illustrated at Figure 10).

 46

2. Technical Specifications

3. Correlation Matrix

5. Specification
Inter-Relationships

7. Competition Benchmarking

7.
 C

om
pe

tit
io

n
B

en
ch

m
ar

ki
ng

6. Specification Priorities

1.
 C

us
to

m
er

 R
eq

ui
re

m
en

ts

4.
 C

us
to

m
er

 P
rio

rit
ie

s

Figure 10 First Level QFD Matrix -- The "House of Quality"

When completing the first QFD "house", QFD consists of the following steps:

(1) Identify Requirements. Stakeholder Requirements are

solicited and recorded on the left y-axis. In more general terms this left hand side is also

known as the "Whats" of the design -- where the "Whats" are those items that are desired.

(2) Identify Technical Specifications. In cooperation with

stakeholders, the requirements are then converted to technical and measurable statements

of the software product and recorded on the top x-axis as specifications. In more general

terms this top row is also known as the "Hows" of the design -- where the "Hows are the

ways in which the "Whats" will be implemented.

(3) Correlate "Whats" and "Hows." The stakeholders then

complete the correlation portion of the matrix by identifying the strength of the

 47

relationships between the requirements and specifications. These values are known as

"correlations."

(4) Establish Priorities. Based on the stakeholder surveys (or

other analytic means), the priorities for the requirements are established and listed down

the right y-axis. In this dissertation these values will be more generally called

"dependency values."

(5) Establish Interrelationships. The relationship (and the

strength of relationship) between specifications is identified and recorded across the top

(the roof) of the matrix. These relationships represent potential engineering tradeoffs

between specifications. The engineer balances these tradeoffs in order to optimize the

design solution.

(6) Calculate Priorities of the "Hows." Specification priorities

are obtained by multiplying the stakeholder requirement priority and the correlation value

of specific specifications. These are recorded along the bottom of the matrix.

(7) Competition Benchmarking. Competitors' products can be

benchmarked against either the customers' requirements or the technical specifications.

While this first QFD matrix is easily constructed, the real strength of the

QFD methodology occurs after the completion of the highest-level matrix. As the project

continues, additional matrices are established, each of which establishes dependencies

with the original stakeholder requirement priorities. This provides visibility of what is

important and what is not. This quality deployment process is illustrated at Figure 11. In

the case of a general set of QFD matrices, the "dependency" that is being deployed is a

customer's view of "quality." However, in this dissertation that dependency may be

defined as a type other than quality (e.g. risk, security, difficulty of implementation, etc.).

 48

C
us

to
m

er
 R

qt
s

Specifications

Sp
ec

ifi
ca

tio
ns

SW Modules

SW
 M

od
ul

es

 Code

 C
od

e

 Unit Tests

Next Version

 U
ni

t T
es

ts

Customer Rqts

Deployment of Dependency

Figure 11 Example of a Simplistic QFD Matrix Deployment

Note that the output of one matrix becomes the input (or starting place) of the next (e.g.,

customer requirements relates to specifications, specifications relate to software modules,

etc.). It is possible to illustrate this set of QFD matrices as a software development

process diagram, as shown in Figure 12.

 49

Cust
Rqts

Code

SW
Modules

Specs

Develo
p Specs Create

Architecture

Co
de

Unit
Tests

Results
Test

Next

Version

Figure 12 Simplistic SQFD Model drawn as a Process Diagram

In this digraph, the circles represent the artifacts created in the software development

process and the edges represent a software development activity that creates new

artifacts. Later in the dissertation these artifacts and activities are more formally defined

as "components" and "steps."

e. Adapting QFD to Software Development
While it is obvious that the production of software differs greatly from the

production of hardware and other manufactured products, it is not so obvious what

adaptations to the QFD process are required for applying QFD to software development.

Since QFD was originally designed to deploy quality in the non-software product

industry, it is important to identify those significant differences between software and

non-software development and modify the QFD process accordingly. [ZULT90] states

that the needed adaptations involve replacing the factors of material and material-based

costs by factors of data and time (or schedule). He summarizes these changes as data

replacing material, processes replacing functions, and time replacing cost.

(1) Data replaces material. Because software differs from

traditional engineering in that it is relatively free of the need for raw material during

production, "material" in the QFD process must be replaced with the closest software

analog of a raw resource -- "data." Software is unique in product development in that it

 50

can be produced directly from requirements without having to undergo a materials-to-

manufacturing process. "Data" becomes the raw resource needed to produce software.

(2) Processes replace functions. In the non-software product

industry, "functions" are implemented by "mechanisms" that are made up of "parts." But

in software, "functions" are implemented by software "processes."

(3) Time replaces cost. Because software development is not

based on a need for raw material, the cost of software development is almost entirely

made up of labor costs directly tied to the time required to produce the software product.

Thus, "time" replaces "cost" in the QFD matrices.

Another required adaptation of QFD to the software development process

is to decide exactly what set of deployment matrices are going to be used and how these

matrices are to be linked. There are fairly complicated and complex schemes of matrices

that can be used in QFD. [COHE95] and [ZULT92] attribute Akao [AKAO90] with

producing the standard advanced book on QFD in which Akao presents what are known

as the Akao "Matrix of Matrices". These thirty matrices form the basis of the typical use

of QFD in non-software product development. The matrices are summarized in Table 2.

Matrix "What" "How" Activity

A1 Voice of the Customer Substitute Quality
Characteristics (SQCs)

Construct Matrix

A2 Functions SQCs Construct Matrix
A3 SQCs SQCs Construct Matrix
A4 2nd level of Design SQCs Construct Matrix
B1 Voice of the Customer Functions Construct Matrix
B2 Competitive Analysis Cost Construct Matrix
B3 Detailed SQCs Breakthrough targets Construct Matrix
B4 Critical Parts SQCs Construct Matrix
C1 New Technology 1st Level of Design Construct Matrix
C2 Functions 1st Level of Design Construct Matrix
C3 SQCs 1st Level of Design Construct Matrix
C4 2nd level of Design 1st Level of Design Construct Matrix
D1 Voice of the Customer Product Failure Modes Construct Matrix
D2 Functions Product Failure Modes Construct Matrix

 51

Matrix "What" "How" Activity

D3 SQCs Product Failure Modes Construct Matrix
D4 2nd level of Design Product Failure Modes Construct Matrix
E1 Customer Needs New Concepts Construct Matrix
E2 Functions New Concepts Construct Matrix
E3 SQCs New Concepts Construct Matrix
E4 Criteria New Concepts Construct Matrix
F1 Value Engineering
F2 Reliability Analysis
F3 Breakthrough Planning
F4 Design Improv. Planning
G1 Quality Assurance Planning
G2 Equipment Deployment
G3 Process Planning
G4 Process Fault Tree Analysis
G5 Failure Mode Effects Analy.
G6 Process Quality Control

Table 2 Akao "Matrix of Matrices" Summary (after [COHE95])

The thirty Akoa QFD matrices are expected to be used as a guide and not

to be used verbatim in all development efforts. Since each design team project will have

different characteristics, these matrices provide a beginning for teams to create their own

QFD Model. [ZULT90] goes further and provides a tailored set of deployment matrices

adapted for use in engineering software as illustrated in Figure 13.

 52

User
Characteristics

U
se

rs Z-0

U
se

rs

User
Requirements

Z-1

Z-2

En
tit

y

Process

User
Requirements

Te
ch

ni
ca

l
Re

qu
ire

m
en

ts A-1

Te
ch

ni
ca

l
Re

qu
ire

m
en

ts

Process

Entity

A-2

Te
ch

ni
ca

l
Re

qu
ire

m
en

ts

Technical
Requirements

A-3

N
ew

C
on

ce
pt

s

Process

Entity

E-2

Fa
ilu

re
M

od
es

Process

Entity

D-2

New
Technology

N
ew

C
on

ce
pt

sE-0

User
Requirements

N
ew

C
on

ce
pt

sE-1

Technical
Requirements

N
ew

C
on

ce
pt

sE-3

New
Technology

Fa
ilu

re
M

od
esD-0

User
Requirements

Fa
ilu

re
M

od
esD-1

Technical
Requirements

Fa
ilu

re
M

od
esD-3

Figure 13 SQFD -- Deployment of the "Customer's Voice" (after [ZULT90])

[ZULT90] has suggested a number of adaptations to Akao's matrix of matrices in

accounting for the differences between producing software and producing non-software

products. In particular, he adds a series of matrices (the "Z" series) that account for

hierarchies and differing perspectives of software stakeholders. The deployment of

concerns and viewpoints of the many different types of customers involved in software

development is particularly important and requires its own set of matrices [ZULT92].

The software engineer must first understand exactly who all the customers (stakeholders)

are, what requirements they have, and to what extent. The requirements analyst must

understand the customer needs at a fundamental level before beginning work on the A-1

matrix [ZULT92]. Secondly, he replaces the use of "material" in traditional QFD

matrices for "entity" (data) and replaces "function" in traditional matrices with "process".

To ensure that the process model (from the data-flow diagram) maps properly to the data

model (from the entity-relationship diagram) he proposes the Z-2 matrix. Next, he states

that because software, early in its development, is conceptual in nature and can be

implemented in many different ways, it is generally not necessary to identify potential

conflicts between the same artifacts and he thus, discards the traditional "roof" of the

 53

QFD matrix. If it later proves necessary to perform such a comparison for a particular

project, he provides a single "roof-like" matrix -- the A-3 matrix. He points out that new

concepts and technology are important ways in which software can exceed customer's

expectations and provides the "E" series of matrices to track potential innovation. The

"D" series provides a balance between new technology and risk associated with failure

modes. Akao's B, C, F, and G series matrices may also be adapted to SQFD.

Just as before, this more complex set of deployment matrices can also be

diagramed as a software development process diagram, where each step (edge) is labeled

with the corresponding QFD matrix (see Figure 14).

User
Char.

Failure
Modes

Tech
Reqts.

New
Concepts

User
Reqts.Users

A-3

Z-0 Z-1

E-1

A-1

E-3

D
-3

E-1

Entity

Process

Z-2A-2
A-2

E-2

D-2

Figure 14 SQFD -- Matrix Deployment as a Process Diagram

Another tailoring of Akao's matrices is performed by [THAC90]. Here

the tailoring is designed to account for the planning phases related to the design of

embedded software systems (see Figure 15).

 54

Requirements
Analysis

Functional
Specification

R
eq

ui
re

m
en

ts
Sp

ec
if

ic
at

io
n

Architectural
Design

High-Level
Design

F
un

ct
io

na
l

Sp
ec

if
ic

at
io

n

Technology
Assessment

Methods/Tools
Procedures

H
ig

h-
L

ev
el

D
es

ig
n Implement-

ation
Planning

Resource
Plan

M
et

ho
ds

/T
oo

ls
Pr

oc
ed

ur
es

Figure 15 SQFD for Embedded Systems (after [THAC90])

One of the unique aspects of this adaptation is the establishment of a Technology

Assessment matrix to provide the ability for companies to analyze the difference between

advanced research and product development. Often, a project that began as a research

demonstrator or advanced technology prototype becomes the basis for a proposed

deliverable product. Unfortunately, the tools needed to actually build the product using

the advanced technology do not exist. The Technology Assessment matrix provides a

critical test of the viability of the high-level design to ensure that the methods, tools and

procedures needed to implement the technology actually exist in the company. If they do

not, then it is possible to return to the architectural portion of the design and rework the

necessary components [THAC90]. This set of adapted matrices can also be viewed as a

software development process diagram (see Figure 16).

Req
uire

men
ts

Analy
sis

Architectural

Design

Functional
Specification

Requirements
Specification

High-Level
Design

Methods/Tools
Procedures

Resource
Plan

Tec
hn

olo
gy

Asse
ssm

en
t

Implementation

Planning

Figure 16 Embedded System SQFD Displayed as a Development Process Model

QFD is often used to implement concurrent engineering, so that parallel portions of the

design can be worked on simultaneously. [THAC90] has further adapted a set of

deployment matrices for this purpose, where the deployment matrices are used to deliver

 55

key information needed to make a management decision as to whether to proceed with

the development effort or not (see Figure 17).

Requirements
Analysis

Functional
Specification

R
eq

ui
re

m
en

ts
Sp

ec
if

ic
at

io
n

Architectural
Design

High-Level
Design

F
un

ct
io

na
l

Sp
ec

if
ic

at
io

n

Technology
Assessment

Methods/Tools
Procedures

H
ig

h-
L

ev
el

D
es

ig
n Implement-

ation
Planning

Resource
Plan

M
et

ho
ds

/T
oo

ls
Pr

oc
ed

ur
es

Analysis

Go/No-go
Decision

Sales Engineering Manufacturing Finance

Marketing Services Documentation Personnel

C
on

cu
rr

en
t

En
gi

ne
er

in
g

Figure 17 SQFD and Concurrent Engineering (after [THAC90])

What all these various efforts demonstrate is that adapting the QFD

process to work with software is possible but requires unique adaptations based on each

different development effort used. Thus, as the HFSE seeks to embed QFD within its

framework, it will do so in a flexible manner, ensuring that the engineer is able to modify

the set of deployments and the entities being linked in the deployments to the engineer's

specific project and the engineer's specific software development process.

f. Establishing Correlations
As QFD matrices are formed and linked, one of the key activities becomes

establishing the correlation be between entities -- correlating the "Whats" to the "Hows."

 56

The use of traditional Japanese symbols is typical in many QFD software packages

[COHE95][LIUX00][AKAO90]. [ZULT90, 92] also provides a visual means that

intuitively demonstrates the strength of a correlation between two entities. In most cases,

these symbols can be typically translated into numerical values of correlation between 0

and 9.

Degree of Correlation

W
ea

k

M
od

er
at

e

S
tr

on
g

Ve
ry

 S
tr

on
g

Ex
tr

em
e

N
on

e

0 1 3 5 7 9

[ZULT90, 92]

[COHE95]

[LIUX00]

•

[AKAO90]

Figure 18 Typical QFD Symbols for Degree of Relationship

Using weight ratios of 1:3:9 helps to highlight the relative importance of software

artifacts making interrelations more obvious, even in complex system development

[THAC90]. However, as [ZULT92] states, the use of just 1:3:9 limits the accuracy of

correlation at the source of input and that additional values (5 and 7) can be used. The

engineer has the option of even using finer distinctions if they feel that consistent

correlation judgments can be made with precision. [AKAO90] states:

The most troublesome work in quality chart preparation is correlating the
demanded quality with quality characteristics [correlating the "Whats" to
the "Hows"]. Often, this correlation is based on experience, intuition, and
determination… This correlation should be based, however, on knowing
and controlling facts. That is, the relationships and their relative strengths
should be based on factual data and statistical analysis… reliance on
experience, intuition, and determination may be necessary if some or all of
the data needed as a basis for confirming the correlating relationships is
not available when the quality chart is being prepared. In such cases, we
recommend devising some method to differentiate relationships based

 57

solely on experience, intuition, and determination from those based on
facts.

[COHE95] asserts that there is no scientific basis for any particular choice of correlation

values and that QFD practitioners select the particular scheme that over time has proven

to provide them the best separation of important data from noisy data in their application.

When establishing correlation between two entities in a QFD matrix using

a 1:3:9 scheme, there are several notes of caution. First, such a scheme assumes a

monotonically increasing linear relationship between the two entities. There may,

however, be instances where this does not accurately model the relationship. As an

example, recall Kano's model of customer satisfaction and requirements (Figure 9); in

that model the relationship between customer satisfaction and any particular requirement

was first dependent on what type of requirement was being considered (thus a

discontinuous relationship) and second was non-linear in cases of "exciting" or

"expected" requirements. Finally, the relationship was negative in the case of "expected"

requirements (not monotonically increasing). So, how do QFD practitioners handle such

complex relationships? In some cases negative correlations have been used in the QFD

matrix when a negative relationship exists; but such techniques are often overly

complicated and the effort in attaining such precision is often not repaid when the results

are presented. The predominate way of handling complex relationships is to attempt to

express all entities in such a way that only positive relationships exist, then to make a

linear approximation of the relationship and finally to take note of the approximation

when latter viewing the results of the matrix [COHE95].

In establishing correlations within the HFSE, the framework will seek to

remain flexible in allowing the engineer to use whatever values he deems necessary. The

use of positive numerical values will be the norm, as well as an assumption that only

positive, linear relationships exist between entities to be correlated.

g. QFD in Large Complex Software Systems
The next issue in embedding QFD into the HFSE is related to scalability,

to determine if QFD can be used in large systems with significant complexity.

[DEAN92] states that "Complexity has two components: the complexity of the system

and the the [sic] complexity of the system to bring forth the system." In other words, the

 58

issue is whether QFD can help to manage the complexity of large systems and/or

manage the complexity in the development efforts for large systems. Previous work

indicates that QFD provides positive benefits in both areas. In large system design it is

useful to map the customer driven quality characteristics against sub-systems of the

design. [DEAN92] proposes doing this by using three dimensions of QFD matrix

interaction as shown in Figure 19.

Akao A1
 Matrix

Akao B1
 Matrix

Akao A2
 Matrix

Quality Characteristics

C
us

to
m

er
 D

es
ire

s

Softw
ar

e F
unc

tio
ns

Requirement
 Variable

Akao A4 & C3
 Matrix

Akao C2
 Matrix

Akao A2
 Matrix

Quality Characteristics

Sy
st

em
s

an
d

Su
b-

Sy
st

em
s

Softw
ar

e F
un

cti
on

s

Requirement
 Variable

Figure 19 3D View of Matrix Interaction (after [DEAN92])

In this scheme a substitution to account for large systems of systems is to use

"subsystem" rather than "part" and to then allocate functions (requirements) to the

subsystems. By using deployments to subsystems in large designs, the developers are

able to more easily manage the overall complexity of the design. In such cases it is

typical to develop matrices in which the interactions between subsystems are defined and

correlated.

In addressing the complexity of the development effort itself, QFD can

help in assisting with managing the conflicting interests of both customers and

developers. In managing customer interests [DEAN92] states that: "Because a large

system with NASA has many customers, often with conflicting desires, we found the

need to value each customer with respect to the need for the project to satisfy their

desires. This quantifies customer political power." In managing the conflicting interests

of the many developers (with a wide range of expertise) in large system development it is

often better to have generalists (rather than specialists) at the architectural portions of the

 59

QFD interaction. By decentralizing and decomposing the system into meaningful

subsystems (with low interaction) it is possible for the specialists then to bring the

expertise fully to bear on the problem. "Fortunately, the geometric nature of QFD is a

natural medium in which to perform that decomposition and manage the interaction"

[DEAN92].

h. The Role of QFD in this Research

As illustrated above, the use of QFD in software engineering has the

potential to provide many significant benefits if properly integrated with a software

evolution model. Certainly, this integration is one of the central goals of establishing the

HFSE. The specific use of QFD in the HFSE can be summarized as follows:

(1) Relationship Tracking. The matrix structure of QFD

readily lends itself to establishing traceability of relationships between software

development artifacts. The entities tracked in QFD matrices (the "whats" and the

"hows") become software artifacts. The correlation matrix becomes the mechanism by

which the relationship (and the strength of that relationship) is established and tracked.

(2) Dependency Deployment. While the automated deployment

of different kinds of QFD dependencies (different than quality) has been theorized

[ZULT93], there has not yet been any formal work in establishing automated

mechanisms to make this a reality. The HFSE does exactly that -- it provides a formal

description of automated mechanisms that allow software engineers to define specific

software dependencies that can then be deployed throughout a software development

effort. The engineer then has the ability to select particular views of these dependencies

that provide useful decision support information.

(3) Adaptable Matrix Deployment. The many permutations

and adaptations to Akao's matrix of matrices dictate that the HFSE must provide a

flexible method of allowing an engineer to define their own software development

process and their own artifacts. Trying to define a single "one size fits all" set of matrices

and artifacts will not properly account for the reality of the many different processes that

are used to build software. Additionally, the ability to map a set of matrices to a software

development process and vice versa (recall Figure 11 / Figure 12 and Figure 13 / Figure

 60

14) provides a convenient mechanism for abstracting the key underlying relationships

represented by the QFD matrices.

(4) Data Linkage. Lessons from previous research indicate

that automation is necessary to allow engineers to "browse" through connected design

information. The underlying hypergraph structure of the HFSE provides the mechanisms

by which this is possible. By linking all the software design data through QFD matrices

and then extracting a subset of those matrices will allow the HFSE to provide the

engineer useful decision support information.

(5) Cross Communication and Coherency of Design.

Embedding QFD into the HFSE will build a framework that enables better cross

communication between departments in software development process.

4. Methods for Establishing Interoperability of Software Development
Models and Tools

Young points out that consistent representation of the same real world

entity in various legacy software products is a continual problem for system

interoperability [YOUN01, 02a, 02b]. To address this problem, he presents an Object-

Oriented Model for Interoperability (OOMI). This model is used to solve the data and

operational inconsistency problems in legacy systems. The model calls for the

establishment of a Federation Interoperability Object Model (FIOM) that is specified for

a specific group of systems (termed a federation) designated for interoperation.

[YOUN01] states:

The FIOM consists of a number of Federation Entities (FEs) that contain
the data and operations to be shared between systems. The FIOM also
captures the translations required to resolve differences in representation
of this data and operations.

An example of an FIOM for a ground combat vehicle is shown in Figure 20.

 61

GroundLaunchedWeapon

GroundLaunchedWeapon_View1
GroundLaunchedWeapon_View2
 ...
GroundLaunchedWeapon_ViewJ

Artillery

SSM
GroundToGroundMissile
GroundTargetMissile

EnemyOrderOfBattle

EnemyOrderOfBattle_View1
EnemyOrderOfBattle_View2
 ...
EnemyOrderOfBattle_ViewK

Artillery_View1
Artillery_View2
 ...
Artillery_ViewL

1*

FederationEntityZ

FederationEntityZ_View1
FederationEntityZ_View2
 ...
FederationEntityZ_ViewX

Federation Interoperability Object Model (FIOM)

SurfaceToSurfaceMissile
. . .

Generalization Aggregation

. . .

.

.

.

<<Federation Entity>>

<<Federation Entity>> <<Federation Entity>>

<<Federation Entity>>

<<Federation Entity>>

Figure 20 Federation Interoperability Object Model (from [YOUN02a])

At runtime, the OOMI uses a wrapper-based translator to process the information

contained in the FIOM. The translator automatically converts instances of real-world

entity attributes and operations to the proper representation to enable interoperation

between systems. These translations can then be embedded in middleware between

target systems as shown in Figure 21.

 62

Source
Model

Destination
Model

Intermediate
Model

Source
System

Destination
System

Federation Interoperability Object Model

Source Model Translator

Destination
Model

Translator

Middleware

groundWeaponSystem

groundWeaponSystem _View1
groundWeaponSystem _View2
 ...
groundWeaponSystem _ViewJ

artillery

enemyOrderOfBattle

enemyOrderOfBattle _View1
enemyOrderOfBattle _View2
 ...
enemyOrderOfBattle _ViewK

artillery_View1
artillery_View2
 ...
artillery_ViewL

1*

federationEntityZ

federationEntityZ _View1
federationEntityZ _View2
 ...
federationEntityZ _ViewX

.

.

.

.

groundCombatVehicle _View1
groundCombatVehicle _View2
groundCombatVehicle _View3

groundCombatVehicle

Figure 21 Middleware Based Translation Using the FIOM (from [YOUN02b])

In addition to defining the constructs of the OOMI, Young provides a

specialized toolset used to create the FIOM prior to run-time. This tool set is called the

Object Oriented Model for Interoperability Integrated Development Environment (OOMI

IDE) and is used to accomplish the following:

• Discover the information and operations shared between federation
components,

• Provide assistance in identifying the different representations used for
such information and operations by component systems,

• Define the transformations required to translate between different
representations, and

• Generate system-specific information used to resolve representational
differences between component systems.

Young's entire Object-Oriented Model for Interoperability is useful to the

dissertation because it provides a mechanism for establishing the interoperability of

heterogeneous software development tools and models. The only requirement for these

models and tools is that they be definable within an object paradigm.

 63

Young identifies two concepts that are directly applicable to mapping

multiple software engineering tools to each other within the HFSE: heterogeneity of

scope and heterogeneity of representation. Heterogeneity of scope refers to the fact that

differing amounts and types of information can be specified by different systems to

represent the state and behavior of the same entity. Heterogeneity of representation refers

to the fact that different systems, when referring to the same entity, often have differences

in terminology used, format, accuracy, range of values allowed, and structural

representation of the included state and behavioral information.

Within the HFSE, attempting to translate behavioral information is

particularly challenging. Young points out that "behavioral information can be captured

in terms of a set of conditions an element must satisfy or as a set of equations describing

the dynamic behavior of the entity" [YOUN01]. Another challenge resolved by the

HFSE using Young's methodology was how to resolve different levels of abstraction for

information provided in different tools and models. The Federation Entity View (FEV)

in Young's OOMI provides the ability to resolve these differences: "The FEV contains

the translations required to convert between each component system representation and

the 'standard' representation of that view. These translations are used to resolve

differences in physical representation, accuracy tolerances, range of values allowed, and

terminology used in representing a federation entity view. These translations are defined

by the interoperability engineer and stored in the FEV for subsequent use" [YOUN01].

Another challenge relates to communication within the FIOM. Young

assumes a publish/subscribe mechanism that assumes a one-directional broadcast of

information from either information sources or information consumers. Updates are a

new issue in the context of software development environments - more than one node

(designer, stakeholder, etc.) can propose modifications to the same real world object

(design component refinement, etc). This may need more sophisticated methods to

maintain consistence.

5. Application of Ontologies for Interoperability

a. Ontology Overview and Example
The term “Ontology” is borrowed from philosophy where it is defined as a

systematic investigation of "Existence". The term is now widely used in Artificial

 64

Intelligence and Knowledge Engineering where what "exists" are those entities which can

be "represented." Ontology is the term used to refer to the shared understanding of some

domain of interest that may be used as a unifying framework to solve problems in that

domain [USCH96]. An ontology necessarily entails or embodies a world view with

respect to a given domain. This world view is often conceived as a set of concepts (e.g.

entities, attributes, processes) along with their definitions and their inter-relationships.

Because people, organizations, and software systems must communicate between and

among themselves, there are often difficulties/inaccuracies in communications because of

differing contexts, understandings, viewpoints and assumptions. Therefore, ontologies

help to accomplish the following:

• Improve poor communication,
• Establish a unifying framework for conceptual models and ideas,
• Establish the basis for interoperability, and
• Prevent redundant work and cross purposes.

 [GRUB95] defines an ontology more formally as "an explicit specification of a

conceptualization" where a conceptualization is "an abstract, simplified view of the world

that we wish to represent for some purpose" and consists of "objects, concepts, and other

entities that are assumed to exist in some area of interest and the relationships that hold

among them." The widespread use of ontologies provides meaningful mechanisms for

distinguishing various types of objects (concrete and abstract, existent and non-existent,

real and ideal, independent and dependent) and their ties (relations, dependences and

logic). Another formal definition is offered by Sowa [SOWA00] as quoted by [LENC01]

who states that an ontology is:

a catalogue of the type of things that are assumed to exist in a domain of
interest D, from the perspective of a person who uses a language L for the
purpose of talking about D.

[LENC01] adds:

From a semantic point of view, an ontology determines the domain of
discourse for a language L, i.e. what L talks about. The ontology on which
L is interpreted actually constrains the expressiveness of L itself. For
instance, if the ontology only contains plants and animals, then it will be
impossible to speak about computers, unless they are categorized either as
plants or as animals, thereby losing the possibility to account for crucial

 65

differences among them. To be able to do this, the ontology should be
refined by adding a further category, e.g. the one of artifactual [sic]
objects.

Ontologies reduce or eliminate conceptual and terminological confusion.

They establish a shared understanding and unifying framework which improves

communication, consistency and ambiguity, integration of differing perspectives,

interoperability, and systems engineering [USCH96].

(1) Communication. Ontologies help to improve

communication between people with different needs and viewpoints arising from

differing contexts. Examples include normative models that establish the semantics of

the system and potential extensions as well as networks of relationships that explore the

relationships between entities.

(2) Consistency and Ambiguity. Depending on the level of

formality used in its establishment, an ontology provides explicit definitions within the

domain, eliminating ambiguity and providing consistent interpretation across the domain.

(3) Integration of Differing Perspectives. Ontologies provide a

framework for integrating different user perspectives. Often the commonalities in the

differing user perspectives can form the groundwork for development of standards within

the community. The differences in the perspectives often lead to different ways of

categorizing information within the ontology (e.g. in an ontology about plants, with

differing perspectives of farmers and florists, different sets of information about each

plant would be needed to support both perspectives).

(4) Interoperability. Interoperability among systems is

achieved by translating between different modeling methods, paradigms, languages, and

software tools. Examples include the following:

• Integration environment for tools,
• Inter-lingua translators,
• Internal interoperability: integration of systems (perhaps legacy

systems), and
• External interoperability: insulation of the organization from the

outside world.

 66

 (5) System Engineering. Ontologies support improvements in

system engineering (e.g. reuse, reliability, specification). Examples include the

following:

• Specification. Ontologies provide a shared understanding that
assists in establishing the specifications of systems and prevents
later misinterpretation of those specifications.

• Reliability. Ontologies can form the basis for manual and
automated verification. Formal ontologies can be used to make
assumptions explicit to users.

• Reusability. Common and explicit understanding allows modules
to be imported and exported between systems.

The formalism used in specifying ontologies varies widely. Ontologies

can range from being very informal to very formal [USCH96]. Consider the following

formalisms:

• Highly Informal: loosely expressed in natural language,
• Semi-Informal: expressed in restricted and structured form a

natural language,
• Semi-Formal: expressed in an artificial formally defined language,

and
• Rigorously Formal: meticulously defined terms with formal

semantics, theorems and proofs of such properties as soundness
and completeness.

As an example of an ontology, the Enterprise Ontology [USCH98] was

developed within the Enterprise Project (a collaborative effort between the Artificial

Intelligence Applications Institute (AIAI) at the University of Edinburgh, IBM, Lloyd's

Register, Logica UK Limited, and Unilever). The Enterprise Ontology provides a

framework for enterprise business modeling and is presented as a collection of terms and

definitions relevant to business enterprises. [USCH98] uses natural language definitions

for all the terms and is an example of a semi-informal ontology. Table 3 lists the terms

defined in the Enterprise Ontology.

 67

Major Category Ontology Terms
Activity Activity, Activity Specification, Execute, Executed Activity

Specification, T-Begin, T-End, Pre-Condition, Effect, Doer,
Sub-Activity, Authority, Activity Owner, Event, Plan, Sub-
Plan, Planning, Process Specification, Capability, Skill,
Resource, Resource Allocation, Resource Substitute

Organization Person, Machine, Corporation, Partnership, Partner, Legal
Entity, Organizational Unit, Manage, Delegate, Management
Link, Legal Ownership, Non-Legal Ownership, Ownership,
Owner, Asset, Stakeholder, Employment Contract, Share,
Share Holder

Strategy Purpose, Hold Purpose, Intended Purpose, Strategic Purpose,
Objective, Vision, Mission, Goal, Help Achieve, Strategy,
Strategic Planning, Strategic Action, Decision, Assumption,
Critical Assumption, Non-Critical Assumption, Influence
Factor, Critical Influence Factor, Non-Critical Influence
Factor, Critical Success Factor, Risk

Marketing Sale, Potential Sale, For Sale, Sale Offer, Vendor, Actual
Customer, Potential Customer, Customer, Reseller, Product,
Asking Price, Sale Price, Market, Segmentation Variable,
Market Segment, Market Research, Brand, Image, Feature,
Need, Market Need, Promotion, Competitor

Time Time Line, Time Interval, Time Point
Table 3 Overview of the Enterprise Ontology (after [USCH98]).

The table illustrates a collection of terms and definitions relevant to business enterprises.

This collection is presented in natural language and is classified into major categories.

An example of the definition of the term "Corporation" under the major category of

"Organization" is as follows [USCH98]:

CORPORATION: a group of PERSONS recognised in law as having
existence, rights, and duties distinct from those of the individual
PERSONS who from time to time comprise the group.

Notes:

1. Historically, in law, rights and duties apply to individual
humans; rights and duties of groups are inherited from this.

 Note that the definition of CORPORATION uses other terms from the ontology (i.e.

PERSON) and thus establishes a relationship between these two terms. The definition

also includes additional annotations (notes) that further clarify the definition, reducing

ambiguity.

 68

Ontologies play an important role in the interoperability aspects of the

HFSE and the concepts about ontologies in this section lay the foundation for this role.

As a basis of implementing Young's OOMI, the interoperability engineer must begin with

an ontology of the domain. [YOUN02b] illustrates this essential role in FIOM

Construction Use Case in Figure 22.

FIOM Construction
Process

Update Federation On tology

Component System External
Inte rface Schema

FIOM Database

Ontology Database

Ontology Librarian

Manage Federation Entities

<<search>>

Add Component System External
Interface

nn

<<incl udes>>

Inteoperabil ity Engineer

Request Ontology Update

<<communicate>>

Translator Information DatabaseGenerate System Specific
Translator Information

Register Compone nt Class
Representation

<<search>>

<<includes>>

Tra nsla tion Lib rary

<<search>>

Figure 22 Role of Ontology in FIOM Construction (from [YOUN02b])

In the case of the HFSE, the domain is that of software development tools (and artifacts

produced by those tools). Thus, a first step in establishing the HFSE is to construct an

ontology for the set of tools to be integrated by the HFSE. The majority of the work in

establishing this software development tool ontology was undertaken by [HASN03] in

support of this dissertation.

 69

b. Constructing an Ontology

There is no current field of "ontological engineering" comparable to the

field of knowledge engineering, so there are no standard accepted methodologies for the

building of an ontology. [USCH96] provides a general methodology for constructing an

ontology that can be modified and fit to particular purposes and consists of the following

steps:

• Identify the purpose and scope of the ontology,
• Build the ontology,

• Capturing the ontology,
• Coding the ontology,
• Integrating existing ontologies,

• Evaluate the ontology, and
• Document the ontology.

This general methodology consists of four main steps detailed below.

(1) Identify the Purpose and Scope of the Ontology. One of

the most important steps in constructing an ontology is to make an early decision as to the

purpose of the ontology. This purpose provides a controlling perspective on the terms,

attributes of terms, and relationships captured in the ontology. The scope of the ontology

provides a guide to the depth and breadth of the intended ontology, consistent with the

purpose. For instance, if the ontology is to be used for interoperability, then the engineer

must establish both semantic and syntactic detail (at an appropriate level of detail) in

order to ensure that information can be transmitted and used between systems.

(2) Build the Ontology. The first step in building the ontology

is to capture the key concepts and relationships in the domain and then to precisely and

unambiguously define these terms. In coding the ontology, the goal is to develop an

explicit representation of the domain using the concepts and relationships already

captured. This "coding" can be performed with increasing levels of formality. The

engineer must decide upon a representation language and must decide upon the meta-data

that will be used to formally express each ontology term and relationship. Another

consideration is to decide to what degree (if any) should already existing ontologies be

integrated into the new ontology. This of course needs to be consistent with the scope of

the ontology agreed previously.

 70

(3) Evaluate the ontology. Specific evaluation criteria for the

ontology should be established. Such criteria could be based on the general guidelines

[GRUB95] provides for constructing an ontology. These guidelines include clarity,

coherence, extensibility, minimal ontological commitment, and minimal encoding bias.

The ontology is then iteratively compared to these criteria and refinements are made as

needed. [GRUN95] offers a more formal approach to the evaluation of ontologies using

formal competency questions and completeness theorems. His approach requires a

formal ontology in which the ontology definitions and constraints on their interpretation

have been defined using first-order logic.

(4) Document the ontology. The final step is to document the

ontology. All assumptions about the domain should be annotated as well as information

about the meta-data used to describe the ontology. Of particular importance is to

document the ontology boundaries (consistent with the scope). This documentation can

take the form of textual descriptions, formal predicates, and UML diagrams.

[NOYN01] offers a slightly more specific set of steps for constructing an

ontology; however, her methodology assumes the use of the Protégé ontology capture

tool [PROT03a]. The seven steps in her methodology include the following:

• Determine the domain and scope of the ontology (similar to (1)
above),

• Consider reusing existing ontologies (as in step (2) above),
• Enumerate important terms in the ontology (as in step (2) above),
• Define the classes and the class hierarchy (using Protégé),
• Define the properties of classes -- slots (using Protégé),
• Define the facets (types of properties) (using Protégé), and
• Create instances of the classes (using Protégé).

This methodology does not address step (3) (ontology evaluation) of the [USCH96]

methodology; but, it does provide more detail and a specific tool for accomplishing steps

(2) and (4).

The general methodology proposed by [USCH96] and the more specific

methodology by [NOYN01] are important to this dissertation in that they form the

template by which a methodology is established for building the software development

tool ontology upon which the HFSE relies. The details of this modified methodology

(and the results from the effort) are presented in Chapter III.

 71

c. Ontology Definition and Capture

Steps (2) and (4) in the general ontology design methodology above imply

that some of the key activities involved in ontology design center around building and

documenting the ontology. In the case of this dissertation, the tool used for both of these

steps is an ontology capture tool developed at Stanford University called Protégé-2000.

This tool can be used to define the meta-data, the structure of the information of the

ontology, as well as to capture specific instances of ontology classes (consistent with that

structure).

 Protégé-2000 is a knowledge-based design and knowledge-acquisition

system. It is available free from Stanford University's Protégé project homepage

[PROT03a] and is compatible with a wide range of knowledge representation languages

[PROT03b]. The tool allows the ontology designer to create custom knowledge-based

tools for particular applications. Protégé assists software developers in creating and

maintaining explicit domain models, and in incorporating those models directly into

program code. The core concept behind the architectural makeup of Protégé-2000 is

ontology design. The tool allows the designer to establish the granularity of the design in

a domain-specific area. Then using problem-solving methods specific to that domain,

domain experts can then search the ontology knowledge base.

The Protégé knowledge tool uses four main concepts that are represented

in the software by frames. These are

• Classes,
• Instances,
• Slots, and
• Facets.

Classes represent the definitions of concepts; instances represent the specific examples of

a concept; and slots represent attributes of either a class or an instance. Finally there are

facets, which are defined as properties of slots, and are constraints on slot values

[PROT03a]. Figure 23 is screen shot of the Protégé-2000 knowledge acquisition tool.

 72

Figure 23 Protégé Screen Shot

This particular screen shot is taken from the Requisite®Pro Ontology (one of the

subordinate ontologies of the HFSE presented later in the dissertation). Note the use of a

class-hierarchy tree in the upper left panel, with slots for the selected class displayed in

the lower right panel. Protégé offers tabs for navigating between classes, slots, forms (to

collect data), instances, and queries (to collect specific data from the ontology database).

While Protégé with its hierarchical class structure at first looks much the

same as an object-oriented software approach, there are differences. [MUSE98] and

[NOYN01] both point out that ontology development using Protégé is different from that

taken in traditional object-oriented programming. In object-oriented approaches both the

domain knowledge (the attributes of objects) and the problem solvers (the methods) are

bundled together. Sending messages from one object to another controls program

execution. Each object encapsulates both data and the methods that operate on that data.

In the Protégé approach, however, the problem-solving methods are separate entities unto

themselves and have formal parameters that must be mapped to the appropriate classes in

 73

the domain knowledge (i.e. the methods (Protégé slots) have an existence outside of and

distinct from the class).

The Protégé tool itself is GUI-based; all the design is done using forms

and tabs. The tool also employs a visualization tool that allows the designer to see and

edit the ontology structure. The Protégé API provides designers the ability to add plug-

ins and to access domain knowledge stored in the Protégé tool from other applications.

The role of Protégé in the dissertation is that it is the ontology definition

and capture tool that is used to define the software development tool ontology required by

Young's OOMI for establishing interoperability between heterogeneous software

development tools. The ontology data-base required by [YOUN02b] (recall Figure 22)

is that of Protégé. A summary of the HFSE ontology results from Protégé are presented

in Chapter III; however, for a more complete and detailed explanation of how Protégé

was used to support this dissertation, see [HASN03].

d. UML as an Ontology Description Language
[CRAN99, 01] and [KOGU02] present the Unified Modeling Language as

a possible language for defining and describing domain ontologies. Object-Oriented

Modeling (OOM) and the Unified Modeling Language (UML) have established a

significant following in the field of software engineering. Because of this acceptance and

the fact that OOM and UML are widely supported by robust commercial tools, the use of

UML for ontology representation is attractive. [KOGU02] offers the following additional

reasons why an ontology designer should consider UML as a representation language for

ontologies:

• UML is graphical and easily understood.
• UML is an open standard managed by the OMG.
• UML has standard mechanisms for defining extensions.
• Real world systems often have existing UML models.

[CRAN99] points out that UML by itself is often not expressive enough to explicitly

define ontology terms and constraints. He points to the use of the Object Constraint

Language (OCL) in refining relationships on and between classes as a way of

overcoming this shortcoming.

 74

Because Young's interoperability model is highly reliant on an object

structure within the FIOM, the use of UML to define the relationships between ontologies

in the HFSE makes sense. The OOMI methodology uses a UML type structure to

express the inter-relationships between objects in different ontologies – mirroring that

implementation will make it easier to apply Young's methodology [YOUN02b].

C. RELATED WORK
The foundations for the contributions of this dissertation were laid in the previous

section. In this section, the focus is on identifying the related work by others (that work

which attempts to achieve a similar purpose as the HFSE). This section identifies and

distinguishes how this related work differs from that accomplished by this dissertation.

1. Software Development Tool Suites: The Rational Approach

While there are many software development tool suites, perhaps the most

significant work to date in developing a large integrated set of powerful tools for building

software has been undertaken by Rational Software Corporation.

a. Summary

[KRUC96] provides an overview of the Rational Development Process.

He describes the Rational Development Process for software as a highly automated,

object-oriented, iterative and incremental software development process. It is centered

around three main pillars: people, process, and tools/methods. The process can be

approached from two main perspectives: management and technical. From the

management perspective there are four main phases of development: inception,

elaboration, construction, and transition. From the technical perspective, development is

best viewed as a series of incremental iterations concluding with the release of a product.

The two perspectives synchronize through the production of artifacts related to

development as illustrated in Figure 24 below.

 75

Figure 24 Synchronization of Perspectives in the Rational Process (from [KRUC96])

The Rational process identifies a number of artifacts; however, the software itself is not

considered an artifact. These artifacts include the following:

• Management artifacts: organizational policy, vision, business case,
development plan, evaluation criteria, release description,
deployment document, status assessment; and

• Technical artifacts: user's manual, software documentation,
software architecture

Intellectual activity (such as planning, analysis, design, etc.) can be done

in any phase. Figure 25 gives an example of the amount of intellectual activity that might

take place during any particular phase.

 76

Figure 25 Intellectual Activity in the Rational Process (from [RATI03])

While continually growing, the Rational's tool support for software

development is substantial. [RATI98] points out that any software engineering process

requires tools to support development activities throughout the software's lifecycle:

An iterative development process puts special requirements on the tool set
you use, such as better integration among tools and round-trip engineering
between models and code. You also need tools to keep track of changes, to
support requirements traceability, to automate documentation, as well as
tools to automate tests to facilitate regression test. The Rational Unified
Process can be used with a variety of tools, either from Rational or other
vendors. However, Rational provides many well-integrated tools that
efficiently support the Rational Unified Process.

The following are the automated tools available from the Rational suite to

support software development:

• Rational Requisite®Pro -- a requirements engineering tool that
makes requirements easy to write, communicate and change.

• Rational ClearQuest™ -- a change-request management product
that enables project teams to track and manage all change
activities.

• Rational Rose® -- a visual modeling tool for business process
modeling, requirements analysis, and component architecture
design.

 77

• Rational SoDA® -- automates the production of documentation
for the entire software development process.

• Rational Purify® -- a run-time error checking tool for application
and component software developers programming in C/C++.

• Rational Visual Quantify™ -- a performance profiling tool for
application and component software developers programming in
C++, Visual Basic, and Java.

• Rational Visual PureCoverage™ -- identifies areas of code not
exercised in testing so developers can thoroughly, efficiently and
effectively test their applications.

• Rational TeamTest -- creates, maintains and executes automated
functional tests, allowing the test team to thoroughly test the code
and determine if the software meets requirements and performs as
expected.

• Rational PerformanceStudio™ -- a tool that measures and
predicts the performance of client/server and Web systems.

• Rational ClearCase® -- a software configuration management
tool.

These tools have been specifically designed to be interoperable and to function by using a

"model" approach. The idea is that a model of the software system is created and specific

artifacts related to the model are produced by the tools.

b. Relationship to the Dissertation Topic
There are several concepts from Rational's integrated tools suite that are

related to work presented in this dissertation.

(1) Management and Technical Perspectives. The Rational

Development Process has both management and technical perspectives, as does the

HFSE. These perspectives allow particular stakeholders to glean particular information

from the development effort subject to their needs.

(2) Process Dependence. The Rational Development Process

ties together people and tools through process (and procedures and artifacts). The tools

supplied by Rational are integral to the Rational Unified Process. The HFSE, on the

other hand, ties together tools for people, independent of process.

(3) Diversity of Artifacts. The diversity and number of

management and technical artifacts imply a need for life cycle coverage. Because the

suite is managed and maintained by a large software developer with a significant user

base, artifacts developed today will likely be able to be viewed decades later (as long as

 78

Rational remains in business). This may not necessary be the case in the HFSE, where

artifacts developed with tools that the user has today may not be available (because of

software/hardware obsolescence) decades later. This presents an issue that tests long-

term openness/extensibility of the HFSE and is an issue to be considered in future

research.

c. Weaknesses

The main weakness of Rational's tool suite is one of "Legacy System

Interoperability." Rational Software Corporation's history is one of software

development tool acquisition -- collecting the "killer apps" of the software development

domain. Rational then lashed together these tools and developed a "unified" process

around the tools rather than define the process, then develop tools that support that

process. This is not to say that what they have accomplished is not without merit. In

fact, the popularity of Rational's tool suite speaks volumes about its usefulness to produce

real software products. However, in the ideal world, process should come first, with tools

specifically designed and tailored to support the process -- not the other way around.

Otherwise, important aspects of the process could be left out or forgotten simply because

they were not supported by the tools available.

The main advantage of the approach taken with development of the HFSE

over the Rational tool approach is that the HFSE is specifically designed to account for

legacy software development tools and processes. Software engineers construct the

HFSE around their already existing software development process and tools. The HFSE

allows software designers to interoperate between the tools that they already use rather

than have to rely on tailoring an integrated tool suite to their use. They will be able to use

the process they want with the tools they want -- building up their development

environment over time.

2. Rational Unified Process (RUP)
As in the case of software development tool suites, there are numerous software

development process models that provide software engineers methodologies for

producing software. To some degree, each of these process models attempts to provide

some of the same aims as the HFSE; namely, providing software engineers an ability to

have life-time visibility and leverage of all the software development artifacts produced.

 79

These process models include the waterfall model, the linear sequential model, the

prototyping model, the rapid application development model, the evolutionary model, the

spiral model, the Win-Win model, formal methods, etc. A good survey of each of these

process models in provided in [PRES01] and [SOMM01]. Rather than attempt to

compare each of these models against the HFSE, the focus of this section will be to

examine just one process model (Rational's Unified Process (RUP)) and contrast it

against the HFSE approach.

a. Summary
[RATI98] is a guide to using the Rational Unified Process® and was

produced by Rational Software Corporation to provide software developers a set of six

best practices to employ when using the process. [RATI98] begins with a summary of

the RUP:

The Rational Unified Process® is a Software Engineering Process. It
provides a disciplined approach to assigning tasks and responsibilities
within a development organization. Its goal is to ensure the production of
high-quality software that meets the needs of its end-users, within a
predictable schedule and budget… The Rational Unified Process is a
process product, developed and maintained by Rational® Software… The
Rational Unified Process enhances team productivity, by providing every
team member with easy access to a knowledge base with guidelines,
templates and tool mentors for all critical development activities… The
Rational Unified Process activities create and maintain models. Rather
than focusing on the production of large amount of paper documents, the
Unified Process emphasizes the development and maintenance of
models—semantically rich representations of the software system under
development…The Rational Unified Process is supported by tools, which
automate large parts of the process. They are used to create and maintain
the various artifacts -- models in particular -- of the software engineering
process: visual modeling, programming, testing, etc. They are invaluable
in supporting all the bookkeeping associated with the change management
as well as the configuration management that accompanies each
iteration… The Rational Unified Process is a configurable process. No
single process is suitable for all software development. The Unified
Process fits small development teams as well as large development
organizations. The Unified Process is founded on a simple and clear
process architecture that provides commonality across a family of
processes.

 80

The RUP provides a great deal of automation for many aspects of software

development. The RUP relies on unifying process, people, and tools into a management

and technical perspective as shown in Figure 26 [KRUC96].

Figure 26 Rational Unified Process (from [KRUC96])

In addition to providing an overview of the RUP, [RATI98] identifies and

describes six best practices to employ when using the RUP.

(1) Develop software iteratively. Apply an approach that

takes advantage of an increasing understanding of the problem during iterative

refinements.

(2) Manage requirements. Elicit, organize, and document the

system's required functionality and constraints. Document design decisions and

tradeoffs.

(3) Use Component-Based Architectures. Establish an early

baseline architecture that is flexible, understandable, and promotes software reuse.

(4) Visually Model Software. Capture the structure and

behavior of architectures and components while hiding their details. Use graphical

building blocks and abstraction to convey main ideas.

(5) Verify Software Quality. Review the software with respect

to the requirements. Check reliability, functionality, application performance, and system

performance.

(6) Control Changes to Software. Change is inevitable. The

successful project requires that you control, track, and monitor changes.

 81

b. Applicability or Relationship of Work to the Dissertation Topic

There are two concepts associated with the RUP that are similar to the

approach taken by the HFSE.

(1) The idea that the Rational Process is configurable is

noteworthy. The HFSE is configurable as well; however, as Rational provides a suite of

tools where a software development organization "turns-off" that functionality which it

does not use or is not applicable; users of the HFSE will "build-up" their configuration by

adding only those tools which are useful.

(2) Rational uses Tool Mentors to provide users a step-by-step

guide describing in detail how to operate a tool, (i.e. what menus to launch, what

information to enter into dialog boxes, and how to navigate a tool) to carry out an activity

within the process. The Mentors allow users to link the tool-independent process to the

actual manipulation of the tools. The main idea here useful to the dissertation is that

Rational still requires the software engineer to be the primary linkage between tools. The

tools themselves contain some compatible file formats and processes, they allow cut and

pasting between tools, but there is not an automated linkage between all relevant objects

between all the tools.

c. Weaknesses
The Rational Unified Process differs from the HFSE approach in the

following four significant ways:

• Over-reliance on people and process as unifying factors,
• Use of only specific proprietary tools,
• Configurability of the tool set, and
• Lack of a QFD style dependency metric that links artifacts in all

phases of software development.

While the Rational development process unifies specific tools through

people and process (and procedures and artifacts), the HFSE unifies any tools for people,

independent of process. In other words, the Rational process is overly reliant on people

and process to be the unifying factor between their specific set of tools. The HFSE is not

dependent on any specific set of tools and instead will allow the developers to unify the

tools with which they are most familiar. Users of the HFSE will "build-up" their

configuration by adding only those tools which are useful. In other words, the Rational

 82

Process is configurable only as long as software engineering is restricted to subsets of the

tools provided by Rational (and a few Microsoft office tools for which they have

accounted); while, the HFSE will accommodate an open universe, including tools that

have not been developed yet. Finally, the Rational approach does not provide for the

QFD style of holistic linkage of all artifacts created in the software development process.

Lacking this linkage, it is impossible to gain adequate visibility of the effects of particular

metrics on other phases of the development process.

3. Integrated Software Development Environments
There has been a significant amount of software engineering research associated

with Integrated Software Development Environments (ISDEs), Integrated Project

Support Environments (IPSEs), and Integrated CASE tools (I-CASE). This includes a

workshop series (ACM SIGSOFT's Software Engineering Symposium on Practical

Software Development Environments (SESPSDE) over a 5 year period in the late 1980’s

and early 1990's) as well as a major DARPA program (called Arcadia). This previous

work differs from the HFSE primarily in that the HFSE focuses on the holistic nature

software artifacts and the relationships between them (captured by QFD) whereas these

other previous efforts focused mainly on electronic syntactic data interoperability

between tools. These previous efforts cast the HFSE as unique in terms of

interoperability, but not particularly original. However, the integration of QFD into the

RH model to provide rich dependency relationships between development artifacts

remains both unique and original.

a. ISDEs and ISPEs
[BROW92, 93] examines and summarizes some of the problems in

developing ISDE/ISPE technology. He points out that the research associated with

software development tool support has centered around two main approaches.

(1) IPSE Approach. In this approach, the IPSE developer

attempts to provide an infrastructure for common services required by multiple tools.

The environment is often constructed around a particular software development process

and provides specific services in support of that process. [BROW93] states: “The

majority of the work in this area has explored the common services that need to be

 83

provided by such a framework, and the consequent interaction between the framework

and the tools which are embedded within it.”

(2) Computer-Aided Software Engineering (CASE) Tool

Approach. In this approach, market needs and customer feedback drive the expansion of

existing CASE tools to encompass ever-greater functionality and provide additional

features to support ever-increasing portions of the software development process.

It is the IPSE approach that most closely parallels the approach in the

HFSE, so it is useful to examine why the IPSE approach has yet to meet expectations for

improving software development. [BROW93] cites a number of reasons. First, there is

little economic evidence that IPSE approaches are effective and without such evidence

developers are reluctant to adopt such technology. Developers would much rather

purchase individual CASE tools and glue them together. [BROW93] states:

…the purchase of a CASE tools is not seen as a strategic decision, but
more as a pragmatic one. For example, it is often found to be easer to
obtain money and management support for purchasing a new CASE tool,
or integrating a set of CASES tools, than for investing in IPSE technology.
This is due to the incremental nature of the investment, the more visible
improvements in productivity they often bring, and the more manageable
complexity of the new software.

Second, IPSEs’ size and complexity makes them unmanageable; often there is a

perception that productivity will actually decrease because of this complexity. Third, the

lack of flexibility and generality in IPSE approaches makes them less attractive. While

generality is a goal of most IPSE technologies, few in reality are flexible enough to adapt

to the way in which developers actually develop software. In other words, most IPSE

technologies require fundamental process or activity changes on the part of the user

rather than accommodating what the user already does and provide additional

functionality in support of their process or activity. Finally, there is concern over long-

term support of IPSE approaches.

b. Portable Common Tool Environment (PCTE)

A typical IPSE research initiative is the Portable Common Tool

Environment (PCTE), which was a project supported by the European Computer

Manufacturers Association (ECMA) during the late 1980’s and early 1990’s. The project

 84

centered on defining a public tool interface for which software engineering environments

were constructed. The PCTE provided a specific tool interface and central Object

Management System (OMS). Software development tools that complied with this single

interface would store their development artifacts within the PCTE OMS. Links (which

could be specifically typed) could then be established between objects in the central

PCTE database [BOUD88].

In identifying missteps in IPSE research, [BROW92] points out that

interface and repository approaches (such as PCTE) are unlikely to be of significant

value. The reason for this is because few commercial software development tool

developers have substantial economic incentive to build tools compliant with such an

interface definition and specific OMS structure.

c. Arcadia

A DARPA IPSE initiative called “Arcadia” was initiated in the late 1980’s

with a goal of performing validated research of software development environments.

Arcadia consisted of a number of loosely grouped approaches, each of which addressed

different parts of the IPSE problem [KADI92a, b]. A few of the systems included in the

Arcadia project follow:

• Chiron-1: a user interface system [TAYL94],
• Chimera: a hypertext system for linking heterogeneous systems

[ANDE94],
• APPL/A: a software process programming language [SUTT95],
• Pleiades: an IPSE object management system [TARR93], and
• Triton: an IPSE object-oriented database management system

[HEIM92].
Arcadia used a process programming language APPL/A to tie together the many

threads of an IPSE environment. Much of the work has centered on using and modifying

database systems for undertaking syntactic interoperability via the process programming

language. Readers interested in the Arcadia project are referred to the collected Arcadia

papers in [ARCA95].

d. Weaknesses
The majority of IPSE approaches have focused on supplying syntactic data

exchange by providing integration environments and common services for embedded

tools. As [BROW92] points out, these efforts have met with little success:

 85

The bottom line is that current work on IPSEs is focusing on the wrong
thing. Instead of creating mechanisms for integration at the lexical or
syntactic level, it should be addressing how to provide user functionality,
productivity, software quality, and so on – issues that come from stressing
semantic- and method-level integration.

In some cases, commercial vendors have attempted IPSE implementations by buying

collections of CASE tools and “gluing” them together “through a common set of data

definitions used between the tools, use of a common data transfer protocol, or through the

writing of individual conversion routines to link the tools used by the organization”

[BROW93]. Unfortunately, these approaches are not providing substantially new

functionality; they are only providing various levels of electronic data interoperability.

The HFSE provides a holistic approach centered on the actual software

development process the developer is using. To date, there has been comparatively little

research that addresses “process-” oriented IPSE approaches. [BROW93] states:

There is at least one further view of integration which has yet to receive
significant attention – a process view. This… approach addresses the
integration of tools with an organization’s exiting software development
process. No generally applicable models are currently available in this
area.

While Arcadia was a project that attempted to fill a part of this research gap through use

of a dedicated, formal process programming language, the HFSE is a less formal (but

more flexible and pragmatic) process approach that allows the user to model their

existing process graphically and then to holistically link artifacts in CASE tools that the

user is already using with a rich set of user defined dependency relationships. Finally,

the HFSE differs from this related IPSE work in that it addresses many of the

shortcomings of other IPSE approaches because it is relatively light-weight, can be

applied incrementally to CASE tools that developers already have (or will purchase in the

future), and does not require any long-term support.

4. Software Engineering Ontologies
There is a great deal of literature related to the use of ontologies for capturing the

terminology of a domain for software engineering purposes (i.e. to build software tools to

support a particular domain). In fact, the Enterprise Ontology presented earlier is one

 86

such example. However, there is very little literature related to the development of

ontologies that support the domain of software development tools themselves. Two

exceptions worth presenting here are work done for the Software Engineering Body of

Knowledge (SWEBOK) and the DARPA Agent Markup Language (DAML).

a. Software Engineering Body of Knowledge
The Software Engineering Body of Knowledge (SWEBOK) is an ongoing

IEEE project devoted to providing a "consensually-validated characterization of the

bounds of the software engineering discipline" [SWEB01]. The SWEBOK categorizes

the existing (and future) knowledge for the domain of software engineering; however, it

does not attempt to define that knowledge. The SWEBOK is subdivided into the

following ten knowledge areas that discriminate among the important concepts of

software engineering:

• Software Requirements,
• Software Design,
• Software Construction,
• Software Testing,
• Software Maintenance,
• Software Configuration Management,
• Software Engineering Management,
• Software Engineering Process,
• Software Engineering Tools and Methods, and
• Software Quality.

Each of these areas is further subdivided by an established taxonomy. For

instance, the categories for Software Requirements are shown in Figure 27.

 87

Requirements
Analysis

Requirements
Engineering

Process

Requirements
Elicitation

Software Requirements

Process Support
and Management

Process
Models

Process
Actors

Process Quality
and Improvement

Requirements
Specification

Requirements
Validation

Requirements
Management

Requirements
Sources

Elicitation
Techniques

Architectural Design
and Requirements

Allocation

Requirements
Classification

Conceptual
Modeling

Requirements
Negotiation

Document Structure
and Standards

Requirements
Definition document

Software
Requirements

Specification (SRS)

Document Quality

Model Validation

Conduct of
Requirements

Reviews

Prototyping

Acceptance tests

Requirements
Tracing

Change
Management

Requirements
Attributes

Figure 27 SWEBOK Software Requirements Taxonomy (after [SWEB01])

Note that the level of detail of the taxonomy is fairly abstract. Within the SWEBOK are

textual descriptions of what each category of knowledge represents; however, these

definitions are not explicit.

More germane to the topic of this dissertation is the SWEBOK taxonomy

associated with software development tools. Figure 28 provides the complete listing of

the "Tools" portion of the "Software Engineering Tools and Methods" knowledge area.

 88

Software Tools Software
Methods

Software Engineering Tools and Methods

SW Construction Tools

SW Requirements Tools

SW Design Tools

SW Engineering Management Tools

Heuristic Methods

Formal Methods

Miscellaneous Method Issues

Prototyping Methods

SW Maintenance Tools

SW Configuration Management Tools

SW Quality Tools

Infrastructure Support Tools

Miscellaneous Tools Issues

Rqts Modeling

Traceablitiy

Test Generators

Test Execution Frameworks

Test Management

Test Evaluation

Program Editors

Compilers

Debugers

Interpreters

Comprehension

Re-engineering

Performance Analysis

Project Planning & Tracking

Risk Management

Measurement

Tool Integration
Techniques

Meta tools

Tool Evaluation

Inspection

Static Analysis

SW Testing Tools

SW Engineering Process Tools

Process Modeling

Process Management

Process-centered Software

Integrated CASE Environments

Engineering Environments

Interpersonal Communication

Information Retrieval

System Administrative
and Support

Defect, Enhancement, Issue &
Problem Tracking

Version Management

Release and Build

Figure 28 SWEBOK Software Tool Taxonomy (after [SWEB01])

The SWEBOK software tool taxonomy illustrated in Figure 28 can be

considered the beginnings of an informal ontology to describe the domain of software

development tool knowledge. However, its usefulness as an ontology for establishing

interoperability between different software tools is extremely limited. In the case of the

HFSE, the SWEBOK does not provide enough detail to make it possible to use this

ontology for employing Young's OOMI methodology.

 89

b. DARPA Agent Markup Language

The DARPA Agent Markup Language (DAML) project is a relatively

recent project that is supporting the development of the “Semantic Web” (an improved

World Wide Web where agents can understand the meaning of hyperlinked entities)

[DAML03]. One aim of this DARPA program is to link together many ontologies of

different domains. In support of this effort, DAML has established an ontology library

with over 190 different ontologies from a variety of contributors.

Two of the ontologies in the library deal specifically with software

development tools and software engineering. The Software Tool ontology in the DAML

library is an ontology developed to provide summary information about the software

tools used in a particular research effort. The ontology is relatively small with just four

classes and eleven properties. This ontology is summarized in Table 4.

Ontology
Purpose

Summary information regarding software tools used by a research
program.

Classes in
the Ontology

Group, Person, Tool, User

Properties in
the Ontology

Category, description, email, howUsed, interface, name, price, site,
sourceCode, user, uses

Table 4 DAML Ontology Library: Software Tool Ontology (after [DAML03])

The "Software Engineering” ontology from the DAML library is used to

annotate a UML-based toolset. It is a bit larger with over sixty classes and one hundred

properties. An excerpt from this ontology is presented in Table 5.

 90

Ontology
Purpose

Used to annotate a description of the UML-Based Ontology Toolset
project

Classes in
the Ontology

AnnotationTool, Annotator, Architecture, ArtificialAgent,
ArtificialIntelligence, ArtificialLanguage, CASEtool,
CognitiveScience, Component, ComputerScience, DAML, Discipline,
domainOntology, Engineering, Feature, feature, FormalLanguage,
formalmethods, formalverification, …

Properties in
the Ontology

addsAnnotation, annotates, annotatesWith, appliesSemanticsfrom,
applyTo, applyTool, conductedIn, connects, connectsTo, creates,
definedBy, designedBy, designedFor, displaysMessage, distribution,
elementOf, enablesTool, evaluates, exports, extends, graphicalView,
implementationLanguage, implementationOf, implements, imports,
includesElements, integrates, interpret, inventedBy,
inverseOfaddsAnnotation, inverseOfannotates, inverseOfannotatesWith,
inverseOfappliesSemanticsfrom, …

Table 5 DAML Ontology Library: Software Engineering Ontology (after [DAML03])

Of note is that neither of these existing ontologies really addresses the

domain of interest of this dissertation (Software Development Tool Artifacts). The first

ontology is only used for collecting summary information about different software

development tools that a researcher might use, and the second ontology deals with

annotating one specific UML based software development tool. These ontologies

provide evidence that previous work has taken place in developing ontologies related to

the domain of interest; unfortunately, neither ontology satisfies the need for an ontology

to provide software tool interoperability.

5. The Uses of QFD for Software
As previously discussed, the use of QFD in software development has been

limited to date. However, there are some case studies worth mentioning. [BETT90]

presents a case study from the PRIMA project at Hewlett-Packard in which an

abbreviated set of Zultner [ZULT90] matrices are used. That study found that the major

value added by the use of the QFD matrices was to aid in planning and decision making

portions of the development effort. [SHAR91] presented an overview of results at IBM

in which different subsets of Akao's matrices were used and one of the main noted

benefits was in getting all segments of the development effort to work in a cohesive

manner in meeting customer requirements. [HRON93] reported a case study from

Digital's Corporate Telecommunications Software Engineering (CTSE) group that

 91

performed a distributed QFD session between Europe and the U.S. using Video-

Teleconferencing. They too, used modified Akao matrices with computer support for

completing the tables.

An interesting approach to Object-Oriented Analysis (OOA) using QFD is

presented by [LAMI95]. Table 6 below summarizes the matrices recommended for

using QFD to identify and quantify the relationships between key artifacts in OOA (an

entry in the table indicates the use of a particular matrix).

 Actor
Roles Use Case Objects Data

Attributes Classes Quality
Factors

Users Roles
played

Actor
Roles Tasks

performed

Use Case Task
participants

Entities
affected by
task

Data
needed for
task

"Must-
be"
quality

Demanded
Quality

Task
priority &
user rqts

Objects Entity
relationships

Class
abstractions

Inheritance
relationships

Table 6 QFD Matrices for Performing Object-Oriented Analysis (after [LAMI95])

[LAMI95] cautiously proposes a methodology for using QFD to check to

determine whether the IEEE Quality Factors (efficiency, integrity, reliability,

survivability, usability, correctness, maintainability, verifiability, expandability,

flexibility, interoperability, portability, reusability, etc.) are present in a software design:

Some practitioners of QFD, myself included, are uncomfortable with a
standardized set of quality factors. It is risky to rely on a list of factors
that are by necessity very general in nature. Designers and engineers will
be seduced into believing that they need only consider the "standard
quality factors" to do all that is necessary to assure that a quality product
has been developed. The history of QFD, if it has shown anything has
been that successful designs are those with meticulously incorporate the
voice to the customer as it directly relates to the user's experience with the
product in actual use. Every attempt of which I am aware to create
generic QFD tables, customer demands, or quality characteristics has been
a disappointment. The use of generic lists of "-ilities" should be limited to
verification and completeness checking of distinct quality table that have

 92

been constructed according [to] accepted QFD practices… Looked at
another way, these "-ilities" represent the "must-be" quality (dissatisfiers
in Kano's terminology.) From this perspective, it is easy to see that this
analysis, while useful, is insufficient to assure exciting quality in a system
design.

The significant thing to note from these limited case studies is that none have

taken an approach similar as to the one accomplished by the HFSE. All of the SQFD

studies surveyed have centered on the use of QFD in the requirements or planning phases

of the development effort using some subset of already established QFD matrices. None

have attempted the approach taken in the HFSE to define QFD matrices based on already

existing software development efforts and to integrate these matrices into the software

evolution model.

D. CHAPTER SUMMARY
This chapter presented the results of a comprehensive literature review associated

with previous work in the dissertation area. The chapter presented foundational work that

establishes the underpinnings of the dissertation research. The foundational work of this

dissertation rests largely on these following main research areas and researchers:

• Software Evolution [LEHM69, 97, 98],
• Relational Hypergraph Model of Software Evolution [LUQI90] and

[HARN99a, 99b, 99c],
• Software Quality Function Deployment [ZULT90, 92, 93],
• Object-Oriented Methodology for Interoperability [YOUN01, 02a, 02b],

and
• Use of Ontologies in Interoperability [USCH96, 98].

The chapter also presented an overview of related work in this area. The

distinctions between how this related work differs from the work on the HFSE were

highlighted.

 93

III. TOWARDS A SOFTWARE DEVELOPMENT TOOL
ONTOLOGY

A. CHAPTER OVERVIEW
The first step in applying Young's OOMI methodology to the domain of software

development tools is to establish a federation ontology that describes the domain and to

establish specific tool ontologies of the tools to be integrated within the FIOM (and thus

the HFSE). This effort was specifically undertaken by Hasni [HASN03] in direct support

of this dissertation. This chapter summarizes that work. Readers interested in additional

detail of the ontologies developed in support of this dissertation are referred to

[HASN03].

This chapter provides an overview of the methodology used to develop the

software development tool federation ontology. It summarizes the results of the domain

analysis undertaken to produce the federation ontology. It presents the details of the

federation ontology as well as summarizes the two specific tool ontologies. Finally, the

chapter presents results of how the three ontologies inter-relate by using UML to annotate

the inter-relationships. It is from these inter-relationships that the OOMI IDE produces

translators that can be embedded in middleware to actually exchange data and perform

joint task execution.

B. METHODOLOGY FOR BUILDING THE ONTOLOGY
One way to overcome the obstacles posed by lack of interoperability in

heterogeneous software development is to establish a unifying contextual framework for

the domain. As this contextual framework or “ontology” emerges; people,

organizations, and software systems will be able to communicate with more efficiency.

[USCH96] points out that engineers must often integrate different ontologies in the same

domain to account for legacy systems. To achieve interoperability between systems with

different process ontologies, it is first necessary to develop a common ontology

applicable to all. This is the approach Young takes in establishing a FIOM in the OOMI

 94

[YOUN02b] and the approach that will be taken for establishing the object model for the

HFSE.

Young's object-oriented methodology for establishing interoperability between

heterogeneous systems [YOUN02b] allows interaction between the same real-world

entities, represented differently in different systems. This approach resolves the

differences that exist between different kinds of systems via an establishment of a FIOM.

The establishment of such an object federation between existing process models together

with the integration of the federation with an extended evolution model, generates inputs

and outputs between subordinate software tools and enables them to interoperate (i.e.

exchange data and perform joint task execution).

This portion of the dissertation research builds the needed interoperability

ontologies by identifying and defining the essential characteristics of two software

engineering tools: a requirements engineering tool (Rational Software Corporation's

Requisite®Pro, a main-stream, complex, commercial tool) and a software prototyping

tool (the Software Engineering Automation Tool suite (SEATools), a research model

with tool support for developing executable software prototypes). The approach taken

was to construct an initial (but extensible) federation ontology as well as two detailed

ontologies related to the specific software process models of the two tools. In designing

the federation ontology it was first necessary to analyze the structure, inputs, and outputs

of the two individual tools, perform a domain analysis (of this subset of tools) and

produce a feature model of that domain. In constructing the specific tool ontologies, the

focus was on identifying the classes (and methods) that were needed to pass objects from

one tool to another.

Because there is currently no usable interoperability ontology for the domain of

software development tools, it was not possible to rely on previous work in designing a

federation ontology. Instead, this ontology had to be constructed "from scratch."

Fortunately, there were existing methodologies for designing ontologies [USCH96] and

[NOYN01]. It was possible to tailor these methodologies to develop a specific

methodology for constructing the federation ontology. The tailored ontology

development process consists of the following steps: (1) identify the purpose and scope

 95

of the ontology, (2) perform a feature analysis for the domain of software development

tools, (3) collect similar characteristics between different feature models, establish

affinity relationships, and group commonalities between the two tools to build a

federation ontology representing these commonalities and enter this ontology into

Protégé, (4) construct the more detailed ontologies for each tool in Protégé, (5) use UML

to represent the relationships between the three ontologies, and (6) document the

ontologies.

1. Step 1 -- Purpose and Scope of the Ontology
Determining the purpose and scope of the ontology was fairly straightforward

given the HFSE research goal and methodology. In this case the purpose for developing

software development tool ontologies is to support the federation and component

ontologies required in Young's OOMI interoperability methodology. The FIOM created

using the ontologies establishes the basic interoperability construct of the HFSE. In

terms of scope, the federation ontology must be broad enough to accommodate all

potential software development tools, as well as being extensible in case new ontology

terms and relationships have to be added later. The specific development tool ontologies

must be detailed enough to account for the software processes and objects actually

employed by the software development tools. The existing software API (in the case of

Requisite®Pro) and the source code classes (in the case of SEATools) to a large extent

dictated the level of detail and scope of the tool ontologies.

2. Step 2 -- Feature Modeling
The second step in the ontology design methodology was to perform a domain

analysis of software development tools by constructing and then considering the feature

models of Requisite®Pro and SEATools.

Feature modeling is a method used to help define software product lines

and system families, to identify and manage commonalities and variabilities between

products and systems [CZAR00]. Defining a feature model for an existing software tool

provides a means to explore, identify, and define the key aspects of the existing software

so that these aspects can then be described more fully in an ontology. It is this ontology

that can then be used to establish interoperability between the existing software tools.

 96

This approach for the analysis and the investigation of the structure of

inputs, outputs, and relationships of a collection of individual software engineering tools

can be characterized as a domain analysis (of this subset of tools) and the production of

feature model of that domain. Domain engineering focuses on engineering solutions for

classes of software systems; it introduces and implements several different kinds of

models, such as feature models. The definition of feature models is an important part of

the requirements models (developed during the domain analysis). The feature model can

be viewed as an abstract representation of functionality found in the domain and thus

each feature is a potentially relevant characteristic of the domain -- "potentially" because

the feature also has to be considered in light of the purpose and scope of the ontology.

Feature models represent an explicit model of a device or system by summarizing the

features and the variation points of the device/system. Features in a feature model

include the rationale and the stakeholders for each of feature. A feature model for

software system captures the reusability and configurability aspects of reusable software.

Feature models provide the means to capture the underlying organization of features in a

feature diagram. In the case of this dissertation research, the domain analysis and feature

models were reverse-engineered from the existing software tools instead of being

forward-engineered through examination and consideration of concepts in the domain.

As an example, Figure 29 illustrates a feature model of a how PSDL

timing constraints are implemented in SEATools. Such diagrams provide for rich

expression of subtle implementations -- note that even though a "Finish Within" and

"Minimum Calling Period" are normally required timing constraints, SEATools leaves

these as optional and completes them for the user if they are left blank (e,g SEATools

calculates FW=PER and MCP=MRT-MET respectively).

 97

PSDL Timing
Constraints

Sporadic
Constraints

Non-Time-Critical
Operations

Periodic
Constraints

Maximum
Response Time

Minimum Calling
Period

Maximum
Execution TimeFinish WithinPeriod

Alternative Features Mandatory Feature Optional Feature
Figure 29 Feature Model of the PSDL Timing Constraints of SEATools

(after [HASN03])

The feature model is defined around concepts and not around classes of objects. The

objective is to model features of elements and structures of a domain, not just objects in

that domain. For more detail on the mechanics of how to construct a Feature model,

consult [CZAR00], [GEYE00], or [HASN03].

[CZAR00] provides an excellent methodology for gathering the

information needed to construct a feature tree. He identifies the sources of features as the

following:

• Existing and potential stakeholders,
• Domain experts and domain literature,
• Existing systems,
• Pre-existing models (e.g., use-case models, object models…), and
• Models created during development (i.e., features gotten during

design and implementation).

He goes on to identify the following strategies for identifying and capturing features:

• Look for important domain terminology that implies variability.
• Use feature starter sets to start the analysis.
• Update and maintain feature models during the entire development

cycle.
• Identify more features than you initially intend to implement.

 98

[CZAR00] then provides the following set of general steps in feature modeling process:

• Record similarities between instances (i.e. common features).
• Record differences between instances (i.e. variable features).
• Organize the features in feature diagram into hierarchies with

classification (mandatory, optional, alternative, and/or optional
alternative features).

• Analyze feature combinations and interactions.
• Record all the additional information regarding features.

These steps are referred to as the “micro-cycle” of feature modeling because they are

executed in small, repetitive cycles [CZAR00]. While this methodology and strategy was

useful in constructing the feature tree for Requisite®Pro and SEATools, this

methodology only provided a guide for the actual work. The main difference between

this proposed methodology and the actual methodology used centered around the idea

that in this particular case, the goal was to "reverse-engineer" feature trees from existing

software products; not attempt to define feature trees for prospective software products.

3. Step 3 – Establishing Commonalities

After producing a feature model for RequisitePro and SEATools, the next step

required was to isolate and annotate the commonalities that exist between the two feature

models. These common features then formed the basis for the basic ontology

terminology of the software development tool federation. The approach in this step was

to reason about the two feature diagrams, develop lists of potential terms from the feature

diagrams, identify common terms between the two lists, then construct affinity diagrams

of these common terms. Affinity diagrams are hierarchical Venn diagrams that provide

groupings of related terms. Figure 30 illustrates how an affinity diagram is constructed;

in this case the related terms all deal with "Actors" in the software development process.

 99

Actor

Team

Stakeholders

Architects

Developers

Designers

Team

Architects

Developers

Designers

Stakeholders

Figure 30 Construction of an Affinity Diagram

The groupings of terms in the affinity diagrams then provided the basis for the hierarchy

of terms in the software development tool federation ontology. These terms and

hierarchy were then entered and stored in the Protégé-2000 ontology capture tool. This

software development tool federation ontology is then left open for further future

enhancement and extension.

4. Step 4 – Tool Ontologies

After constructing the federation ontology for the software development tool

domain, the next step required construction of the detailed ontologies of the tools to be

integrated into the HFSE (Requisite®Pro and SEATools). In the case of the tool

ontologies, the detail needed for interoperability was dictated by the detail available

through the API or source code (which ever was available) of the tool. For

Requisite®Pro (a commercial tool) the tool ontology was derived directly from the

Common Object Model (COM) API of the tool (Rational calls this interface the

"Requisite®Pro Extensibility Interface"). In the case of SEATools, the source code was

available; therefore, the ontology was derived from a selected set of classes and public

methods related to the artifacts that were to be transmitted to (or received from) other

software tools.

During this ontology construction process, [GRUB95]'s guidelines for ontology

construction were adhered to as much as possible: clarity, coherence, extensibility,

minimal ontological commitment, and minimal encoding bias. However, because it was

 100

necessary to adhere closely to the actual class constructs of the tools themselves, it was

often not possible to satisfy each of these guidelines. In fact, "minimal encoding bias"

was not adhered to at all; because to later achieve interoperability, the encoding had to

exactly match the class, method, and attribute structures of the API and source code. As

the terms of each tool ontology were identified they were input into the Protégé-2000

ontology capture tool. This tool makes it possible to generate XML schemas of the

classes in the ontology. These XML schemas are the required input for Young's OOMI

IDE.

5. Step 5 - UML Representation of the Domain
The fifth step in the ontology design methodology required that the relationships

between all three ontologies be identified and annotated. The reason for this was to

formulate inter-relationships between the ontologies so that they conform to the general

organization required for Young's OOMI. The basic object structure of OOMI requires

that the ontologies between the federation representation of a real world entity and the

ontologies of the component representations of the same entities be related through the

use of UML. Figure 31 illustrates the general UML structure that was used to annotate

how all three ontologies were related.

Federation
Ontology Classes

RequisitePro
Ontology Classes

SEATools
Ontology Classes

Figure 31 Ontology Inter-relationship (after [HASN03])

Such representations then make it possible to construct a FIOM -- the set of all federation

entities in the domain. Based on the FIOM, the OOMI IDE generated translators that

were embedded in middleware that actually performed the translations between the two

tools.

 101

6. Step 6 -- Documentation

The three ontologies developed for this dissertation research were self-

documenting. The purpose, scope, and methodology used for designing the ontologies

are presented here in this dissertation and in [HASN03]. The domain analysis and UML

diagrams showing the key inter-relationships between the three ontologies are presented

in [HASN03]. Excerpts from the complete ontologies are presented in [HASN03] and

the complete ontologies themselves are stored in Protégé project files. Such

documentation makes it possible for future researchers to modify the ontologies or add

additional tools to the ontology set.

As a final note about the methodology used to develop these initial software

development tool ontologies, a modified version of this methodology should be used

when adding additional tools to the HFSE federation. The modified methodology

includes the following:

• In Step 1: Confirm that the purpose is still valid; expand the scope
to include the new tool ontologies; remove any existing tool
ontologies from the framework that are no longer needed or are
invalid.

• In Step 2: Only perform enough feature modeling of the new tools
so that needed constructs for the federation ontology are identified.
Since the federation ontology is already established it is only
necessary to extend and modify it, not re-build it entirely.

• In Step 3: Modify the federation ontology to account for the
new/modified ontology terms from Step 2.

• In Step 4: Perform the same Step 4 methodology as delineated
above.

• In Step 5: Modify each UML relationship diagram as needed to
account for the new tool ontologies and the changes to the
federation ontology identified in Step 3.

• In Step 6: Perform the same Step 6 methodology as delineated
above.

This modified methodology makes it possible for future researchers to easily add

additional software development tools to the HFSE.

C. DOMAIN ANALYSIS AND FEATURE MODELS

In Step 2, of the methodology above, a domain analysis was undertaken of the

software development tool domain. The analysis was accomplished by examining two

 102

specific software development tools, building feature models of those tools, and then

identifying key terminology of the feature models. There are two reasons why this

domain analysis cannot be considered to be a complete analysis of the domain of

software development tools. First, only two tools (out of many hundreds of possibilities)

were analyzed. Secondly, a domain analysis is not an “additive” activity; simply

analyzing additional tools (beyond those two) by themselves does not completely add to

the overall analysis. The ways in which the new additions affect and change the

previously established analysis must also be considered. Therefore, the limited domain

analysis conducted as part of this research can be considered a necessary, but not

sufficient, analysis towards establishing the HFSE.

1. Rational Requisite®Pro
The first tool analyzed in the domain analysis was Rational Corporation's

Requisite®Pro, a large commercial requirements management tool. The Feature Model

was developed by identifying software features from the Requisite®Pro User's Guide

[RATI01] and by actual day-to-day use of the tool. See [HASN03] for the complete

Feature Model for Requisite®Pro. Figure 32 illustrates a single excerpt from the overall

Feature Model for Requisite®Pro.

 103

Requirements
Traceability

Categorize
Requirements

View Chain of
Relationships

Track all
Requirements

Classify Rqts by
Type

Capture
Requirements

Changes

Organize
Requirements

Identify
High-Level

Requirements

Set Requirement
Relationships

Classify Rqts by
Status

Sort
Requirements

Filter
Requirements

•
•
•

•
•
•

Alternative Features

Mandatory Feature

Optional Feature

Or- Features

Figure 32 Excerpt of the Requisite®Pro Feature Model (after [HASN03])

This excerpt illustrates the features associated with the requirements' traceability

functionality of a Requisite®Pro and is just a small portion of the total functionality (a

small subset of the features) of the entire tool.

From the complete Feature Model of Requisite®Pro, it was then possible to

extract relevant features (with their descriptions). Each of these features then becomes a

candidate for possible inclusion in the federation ontology. The complete list of

Requisite®Pro features is listed below in Table 7 [HASN03].

Ref # Feature Description
1 RequisitePro A requirements management tool
2 Management Documenting and managing requirements throughout

the development lifecycle
3 Requirements

analysis
Requirements linking, tracing, and report generation

 104

Ref # Feature Description
4 Non-functional

features
The subset of non-functional features of the tool (e.g.
integration with other tools, security, and remote
usage via web)

5 Manage projects Projects are the top-level objects managed by
Requisite®Pro

6 Manage teams Group members of the project team for working in a
collaborative environment

7 Manage documents Capture, communicate, organize, and track document
information

8 Set up new project
template

Creates new project templates from existing projects

9 Remove a project
from project list

Remove projects from project list

10 Allow project
revision

Allow the revision of the project

11 Unify teams Unify project managers, QA managers, testers,
developers, etc. in communicating and managing
systems requirements

12 Allow Interaction
with stakeholders

Records stakeholder communications and decisions
made about requirements

13 Provide standard
project templates

Customers can use Rational RequisitePro's
predefined project structures or define their own

14 Report statistics Requirement metrics provide project managers with
statistics to be displayed in Excel

15 Provide isolated
database

Each project is maintained in its own sub-directory

16 Synchronize textual
Software
Requirements
Specification (SRS)

Synchronize textual SRS with database contents

17 Manual revision of
the project

Allow manual revision of the project

18 Automatic revision of
the project

Allow automatic revision of the project

19 Notify teams Keep everyone informed of the current requirements
information

20 Discuss and query Enables threaded discussions on requirements
21 Provide collaborative

design environment
Allows collaborative discussions among the team

22 Record comments Provides recording mechanisms, saves
communications to the project database

23 Provide Consistency Consistency is checked by other members of the
collaborative team

 105

Ref # Feature Description
24 Provide

Synchronization
Requirements database is continually updated as new
information is entered and recorded

25 Improve Efficiency Provides mechanisms for better communication
26 Improve

Understandability
Team members are informed of the current
requirements information with traceability to early
design decisions

27 Improve
Effectiveness

Optimizes team collaboration around the
requirements

28 Easy Access to
documents

Provide access to all requirements for every team
member, by using a central database

29 Customize user
documentation

Customers tailor documentation to their roles and
preferences

30 Maintain documents Provides a document repository
31 Archive Allows the archiving of old documentation
32 Detect documentation

changes
Automatically detects changes to existing
documentation

33 Monitor links Defines traceability relationships or links between
individual requirements and between requirements
and other system elements

34 Set up links Create relationships between artifacts in either the
Word or View Workplaces

35 Identify and clear
suspect links

Relationships between previously linked
requirements are marked as suspect if the text, type,
or attributes of either requirement is changed. This
relationship can be cleared in either Word or View
workplaces

36 Automatic set to
“suspect”

Allows links to be automatically set to “suspect”

37 Manual set to
“suspect”

Allows links to be manually set to “suspect”

38 Automatically clear
suspect links

Provides automatic clearing of suspect links

39 Manually clear
suspect links

Provides manual clearing of suspect links

40 Provide traceability Provides views of chained relationships between
requirements

41 Control requirements Controls the access of multiple users, which provides
control at both the project and document level

42 Create requirements Creates requirements through Word or a View
Workplace

43 Edit requirements Edits requirements through Word or a View
Workplace

44 Verify requirements Ensures that requirements serve as direct input to test
creation

 106

Ref # Feature Description
45 Update requirements Updates the Word Workplace when the requirement

text in the document is modified and the document is
saved

46 Add requirements Adds requirements to the requirements database
47 Delete requirements Deletes requirements or requirement attributes

without disrupting work elsewhere
48 Provide

requirements’ type
Defines different types of requirements

49 Assign attributes to
requirements

Defines different attributes for different types of
requirements and set attribute values for individual
requirements

50 Prioritize
requirements

Provides a prioritization attribute

51 Relocate previous
requirements

Relocates previous requirements

52 Save requirements Saves requirements to the project database
53 Label Requirements

temporarily
Provides a "change pending” function, until the
change is appropriately approved

54 Uniquely identify
requirements

 Assigns a unique identifier to each requirement

55 Facilitates
requirements
coverage analysis

Developers can assess whether they have
documented in detail all features

56 View approved use-
case

Connects requirements with use-case models
instantly accessible by developers. It help to ensure
that the implemented functionality reflects the
customer needs

57 Track all
requirements

Provides views that track the status and attributes of
all requirements

58 Set requirements
relationships

Establish relationships among requirements

59 Organize
Requirements

Organizes requirements by type

60 Establish requirement
hierarchies

Arranges the requirements’ attributes in a hierarchy

61 View chain of
relationships

Views requirements’ chain of relationships

62 Sort the requirements Sorts requirements according to user specified
attributes

63 Filter the
requirements

Filters requirements according to user specified
attributes

64 Facilitate the
Understanding of the
impact of changes

Provides views for impact analysis tailored to each
team member

 107

Ref # Feature Description
65 Report generation Automatically generates user defined reports
66 Tailors usability

options
Provides the ability to specific and set usability
options

67 Remote use via web Includes web interface for database query,
discussion, and for updates to requirement attributes

68 Provides tutorial Includes learning aids, such as tutorial and/or sample
projects

69 Word environment
and import wizard

Allows extraction of textual requirements from
external Word documents

70 Integration with
software tools

Integrates with other Rational tools, such as testing,
design, and project management

71 Reduce errors Collaborative environment helps ensure that errors
are identified early and fully corrected

72 Provides Security
mechanisms

Permissions to access particular features are assigned
to specific groups

73 Finds current version
of document

Web access provides stakeholders the most-up-to-
date requirements

74 Facilitates contextual
understanding

Allows the user to capture information about the
context from which a requirement has been derived

75 Set user security
privileges

Defines users and groups and their access privileges

76 Lock documents Applies locking to selected documents
Table 7 RequisitePro Feature List (after [HASN03])

This feature list is taken directly from the Requisite®Pro Feature Model. The features

towards the beginning of the list are high-level "parent" features, while those towards the

bottom represent more detailed "atomic" features.

2. SEATools

The second tool analyzed during the domain analysis was the Naval Postgraduate

School's Software Engineering Automation Center's (SEAC) Software Engineering

Automation Tool Suite (SEATools). This suite is a research oriented set of prototyping

tools for designing and building executable software prototypes of large complex, real-

time software systems. The SEATools Feature Model was developed by identifying

software features from the SEATools descriptions [LUQI88, 91a, 91b, 96] and by actual

day-to-day use of the suite. See [HASN03] for the complete Feature Model for

SEATools. Figure 33 below and the earlier presented Figure 29 illustrate excerpts from

the overall Feature Model for SEATools.

 108

Edit

Edit Code

Use Other Text
Editor

Edit
Requirements

Use Vi

View CodeView Graphical
Model

Use Ada SDE

Create Graphical
Model

Use Emacs

Edit Graphical
Model

•
•
•

Edit Prototype Edit Ada Edit Hardware
Model

Figure 33 Excerpt from the SEATools Feature Model (after [HASN03])

This excerpt illustrates the features associated with the edit functionality of a SEATools

and is just a small portion of the total functionality (a small subset of the features) of the

entire suite.

From the complete Feature Model SEATools, it was then possible to extract

relevant features (with their descriptions). Each of these features then becomes a

candidate for possible inclusion in the federation ontology. The complete list of

SEATools features is listed below in Table 8 [HASN03].

Ref # Feature Description
1 SEATools An integrated set of software engineering tools

for developing prototypes of real-time systems
2 Management prototype Manage prototypes developed in SEATools
3 Build prototype Constructs the prototype (model, code, etc.)

 109

Ref # Feature Description
4 User interface Provides an interface to accept user commands

and provide information to the user
5 Develop systems Develop functional prototypes
6 Analyze requirements Analyze requirements through evolutionary

prototypes
7 Generate code Automatic generation of the code
8 Model editor SEATools editor that provides a user the interface

to create a software model
9 Modification Modify existing prototypes and graphs
10 Graphical editor Edits the graphical view of the software model
11 Expert-system design

mode
Provides a user interface that allows the user to
access SEATools

12 Debugger Identifies bugs in the software model
13 Browser Provides navigability to different portions of the

software model
14 Evolutionary prototype Maintains evolutionary prototype versions and

variants
15 Feasibility Supports software feasibility studies through

prototype construction
16 Project control Assures control of projects via the use of merger
17 Interaction Allows interaction with the proposed system with

its environment
18 Constraints Allows users to input timing constraints
19 Software base One of the five categories of the SEATools

software
20 Execution support system The window in which SEATools is initially

invoked
21 Creation Allows the creation of a prototype, PSDL, and

graphs.
22 Add Allows the adding of information to an existing

prototype
23 Refine systems Allows changes in an existing prototype
24 Deletion Allows the deletion of undesired information
25 Allow communication Allows communication between different parts of

the model
26 Control communication Controls communication between different parts

in the model
27 Tools Differentiates tools
28 Integration of complex

systems
Supports integration of complex systems

29 Design Assessment of design
30 Evolution control

systems
Provides automated support for coordinating the
multiple versions of design

 110

Ref # Feature Description
31 Merger Provides automated prototype change-merging
32 Subsystems Allows users to generate subsystems
33 Software design Manages the software design
34 Design base Provides persistent storage of the prototype

development data
35 Translator Translates PSDL into Ada code
36 Scheduler Creates schedules for timing requirements
37 Compiler Compiles the source code
38 Execute system Executes all the Ada code for the currently open

prototype
39 Designer Designs a prototype
40 User One of the potential stakeholders in a project
41 Prototype A software model that implements some subset of

requirements for later delivered software system
42 Help Assist the user/software engineer when requesting

information about one of the menu buttons
43 Edit Provides the ability to edit portions of the

prototype (PSDL, Ada,, Requirements…)
44 Essential A category of differentiation for user interfaces,

editors, the execution support system, the project
control system, and the software base

45 Very useful A category of differentiation for user interfaces,
editors, the execution support system, the project
control system, and the software base

46 Useful A category of differentiation for user interfaces,
editors, the execution support system, the project
control system, and the software base

47 Conflict detection Detect timing conflicts
48 Warning Warns of any existing conflict
49 Design database

containing PSDL
Contains the PSDL descriptions and working
code for all available reusable software
components

50 Construction Allows the construction of a prototype
51 New Allows the user to create a new prototype
52 Quitting Quits and closes the SEATools program
53 Commit work Allows prototype design to be entered into the

database
54 Retrieve from database Allows the user to retrieve data from the database
55 Choice Allow the choice of project type
56 PSDL Construct prototypes using a combination of

graphical and textual objects
57 Interface Invokes Transportable Applications Environment

Plus (TAE+) to edit the prototype interface

 111

Ref # Feature Description
58 Requirements Allows designers to edit a requirements file
59 Ada Allows designers to edit Ada implementation

files
60 Caps default Allows designers to choose which text or Ada

editor will be used
61 Hardware model Lets designers check timing constraints relative to

a machine faster or slower than the machine that
is executing CAPS

62 Operating systems Allows designers to account for operating system
in the prototype design

63 Assembler Allows designers to account for operating system
the assembler in the prototype design

64 Programming language Allows designers to account for programming
language in the prototype design

65 Computer systems Allows designers to account for hardware in the
prototype design

66 Libraries Provides libraries for use in prototypes
67 Editors Provides prototype editors
68 PSDL specifications Track PSDL specifications
69 Executed code Track executed code
70 Graphical objects (data

flow diagram)
Allow the construction of data flow diagram

71 Textual objects Constructs and edits textual objects
72 Data flow diagram Shows existing data flow diagram
73 Computational graphs Constructs and edits computational graphs
74 Finding finds prototype graphs
75 Retrieval Retrieve prototype from the database
76 Graphical design Create graphical design
77 Edit graphical design Edit graphical design
78 View graphical design View graphical design
79 View code View code
80 Edit code Edit code
81 Library reused code Use the Reuse Library
82 Control constraints Controls the process and output generation via a

set of conditions or predicates
83 Operators Allows the drawing of operators (circles) in a

data flow diagram
84 Streams Allows the drawing of data streams (directed

lines) in a data flow diagram
85 Terminator Allows the drawing of terminators (rectangles) in

a data flow diagram
86 Timing constraints Allows the entry of Timing constraints
87 Ada SDE A text editor for editing Ada code

 112

Ref # Feature Description
88 Other text editor Used to view and edit text and code
89 Vi A text editor for editing Ada code
90 Emacs A text editor for editing Ada code

Table 8 SEATools Feature List (after [HASN03])

This feature list is taken directly from the SEATools Feature Model. As in the case of the

Requisite®Pro feature list, the features towards the beginning of the list are high-level

"parent" features, while those towards the bottom represent more detailed "atomic"

features.

D. FEDERATION ONTOLOGY
After performing a domain analysis using an in-depth investigation of

Requisite®Pro and SEATools, the two lists were considered together to identify

commonalities -- commonalities that would also likely be common with other software

development tools. These commonalities begin to form the list of terms that eventually

will make up the federation ontology. Table 9 lists the common terms from the domain

analysis [HAS03].

Ref # Feature Description
1 Tool A software development tool
2 Actor Individual(s) participating in one or more roles

in a software development effort
3 Stakeholders A person, group, or organization with a stake

in the outcome of an application that is being
developed

4 Developers The software engineers who develop a
software system

5 Designers The software engineers who design a software
system

6 Architects The software architects for a particular
software system

7 Team A team involved in any software project
8 Activity A sequence of actions undertaken by actors or

the tool
9 Communication Transmission and receipt of information
10 Management Control and direction over all or part of a

software development effort
11 Organization Arrangement of the software artifacts or

information related to a software project

 113

Ref # Feature Description
12 Sorting Arrangement of the software artifacts or

information related to a software project using
user defined criteria

13 Filtering Removal of undesired information using user
defined criteria

14 Synchronization Provides software project stakeholders and
information to operate at the same rate and
time

15 Archiving Storage of particular information related to
software activities

16 Maintenance The process of repair, modification, and
enhancement of a system

17 Creation The initial formation of a software artifact
18 Coding The activity actors perform to generate Code
19 Modification Changes to an existing artifact
20 Verification Confirming that an artifact is correct
21 Artifact Data, source code, or information produced,

gathered or used during the software
development process

22 Documentation Recorded information about the software
development process

23 Statistics Numerical data related to the software
development process

24 Database A collection of arranged data available for easy
and fast retrieval

25 Feedback The provision of information to actors for
comparison purposes

26 Efficiency Improved activity
27 Links/Dependencies/

Traceability
Relationships between the different artifacts in
a software development effort

28 Security A type of dependency focused on the
avoidance of risk and danger

29 Child Parent A type of dependency focused on a
hierarchical arrangement of artifacts

30 Risk The chance of damage or loss
31 Safety Freedom from damage or loss
32 Project Component An individual entity within a
33 Requirements A statement of what functionality, appearance,

and behavior are required of a software system
34 Model A view of the design of an application from a

particular perspective

 114

Ref # Feature Description
35 Use Case A model of an actors interaction with a

software system
36 Library A collection of information and material

related to a project
37 Prototype A partial implementation of a software system

implemented for a particular purpose (e.g.
confirm requirements, test feasibility of
technology, etc).

38 Test Assure the determination, the quality, and the
truth of a software system

Table 9 Common Characteristics for Software Development Tool Federation (after
[HASN03])

After identifying these common terms in the domain of software development

tools, the terms were organized into logical groupings using an "affinity diagram"

technique (recall Figure 30). From these affinity diagrams, it was then straight-forward

to establish the hierarchical structure of the federation ontology. The completed

federation ontology is shown below in Figure 34.

 115

 Tool
 Actor

 Team
 Stakeholders

 Developers
 Designers
 Architects

 Activity
 Communication
 Management

 Creation
 Coding

 Modification
 Organization

 Sorting
 Filtering
 Synchronization
 Archiving

 Testing
 Verification

 Maintenance
 Efficiency

 Artifacts
 Project_Component

 Requirements
 Model
 Use_Case
 Library
 Prototype
 Document

 Reports
 Statistics
 Database
 Feedback

 Links_Dependencies_Traceability
 Security
 Child_Parent
 Risk
 Safety

Figure 34 Software Development Tool Federation Ontology (after [HASN03])

The final activity after formulating this hierarchy was to input the ontology into

Protégé. From protégé it was then possible to generate XML schemas that served as the

input to the OOMI IDE.

E. TOOL ONTOLOGIES

After developing the federation ontology, the next step was to develop the

individual tool ontologies of the tools that were to be integrated into the HFSE. The level

 116

of detail of these ontologies was dictated by the detail of the classes to be used to

establish interoperability between the tools. In the case of Requisite®Pro this came from

Requisite®Pro's Extensibility Interface (its COM API). Figure 35 illustrates the structure

of about 75% of the Requisite®Pro ontology. Each of these classes has numerous

attributes and methods (e.g. the Requirement Class has sixty attributes and methods). See

[HASN03] for the complete ontology.

o Application
 Projects

 Project
 RootPackage

 iPackageable
 Package

 iPackage
 Requirements

 Revisions
 Revision

 Requirement
 AttrValues

 AttrValue
 Revisions

 Revision
 Relationships

 Relationship
 Discussions

 Discussion
 Responses

 Response
 DiscussionLinks

 RelatedProjectContexts
 RelatedProjectContext

 Documents
 Document

 Reports
 Queries

 Query
 Views

 View
 RequirementBucket
 Groups

 Group
 Permissions

 Permission
 Users

 User
 DocTypes

 DocType
 ReqTypes

 ReqType
 Attrs

 Attr

Figure 35 Excerpt of the Class Structure of the Requisite®Pro Ontology
(after [HASN03])

 117

In the case of SEATools, the source code was available so the classes came

directly from a subset of the source code. This subset was identified by reverse-

engineering the source code in TogetherSoft's (acquired by Borland in January 2003)

Together 6.0 Java IDE [TOGE03]. Within Together, a subset of classes and public

methods was identified for the objects that were intended to be passed to other software

applications. This subset formed the basis of the SEATools ontology. Figure 36

illustrates the complete structure of the SEATools ontology. Each of these classes has

several attributes, methods, and properties. See [HASN03] for the complete ontology

listing.
 o SEA Tools

 DataFlowComponent
 Edge
 Vertex

 PSDLTime
 DataTypeObj
 DataTypes
 TypeOp
 TimerOp
 ExceptionGuard
 OutputGuard
 VertexProperties
 EdgeProperties
 PsdlBuilderConstants

 PsdlBuilder
 Token
 CompilerPrototype
 TranslatePrototype
 SchedulePrototype
 ExecutePrototype
 CapsAdaFileList
 CapsMainWindow
 CapsResultList

Figure 36 Class Structure of the SEATools Ontology (after [HASN03])

Together, these two tool ontologies form the basis for the component

representations within Young's OOMI [YOUN02b]. The OOMI FIOM was constructed

by establishing the relationships between these two ontologies and the software

development tool federation ontology through the use of UML.

 118

F. ONTOLOGY INTER-RELATIONSHIPS

After the federation ontology and the two component ontologies (tool ontologies)

were defined, the next step in the methodology (step 5) required that the relationships

between the three ontologies be identified and annotated. This was done using UML.

Both a top down and bottom up approach were taken to identify the relationships between

the three ontologies and record those relationships in static class diagrams (recall Figure

31). In Young's OOMI methodology, the interoperability engineer and the ontology

manager determine the number of real-world entities to relate based on the types of

interoperability to be achieved. In support of this dissertation, eight such relationships

were established [HASN03]. Figure 37 is an example of how the three ontologies are

related for the relationship of "Communication."

CapsResultList CapsAdaFileListDiscussionsQueries

DiscussionQuery

Responses DiscussionLinks

Response

Communication

CapsMainWindow

Figure 37 Communication Class Inter-relationships (from [HASN03])

 119

Figure 37 is just one example of how the relationships between the three ontologies are

related. See [HASN03] for the remaining sets of relationships.

G. CHAPTER SUMMARY

This chapter presented the methodology and results of the research effort devoted

to establishing the set of software development tool ontologies for integration into the

HFSE. A six-step methodology was defined and used to develop a federation ontology

and two specific tool ontologies. Together these three ontologies form the basis for the

establishment of a FIOM using Young's OOMI methodology [YOUN02b].

The six step methodology is extensible so that additional tools can be later

integrated into the framework by future researchers.

 120

THIS PAGE INTENTIONALLY LEFT BLANK

 121

IV. INTEGRATING QUALITY FUNCTION DEPLOYMENT INTO
THE RELATIONAL HYPERGRAPH MODEL OF SOFTWARE

EVOLUTION

A. RELATIONAL HYPERGRAPH SOFTWARE EVOLUTION MODEL

1. Overview of the Relational Hypergraph Software Evolution Model

As previously discussed, Harn establishes a Relational Hypergraph model (RH

model) to describe Software Evolution. This model establishes dependencies and links

between key activities/artifacts of a software development cycle and also between

sequential iterations and variations of cycles. The model allows the development of tools

to manage both the activities in a software development project and the products that

those activities produce.

 In the Relational Hypergraph model, activities and artifacts affected by the

software evolution process are called software evolution objects and consist of "Steps"

and "Components." The Relational Hypergraph uses a hierarchical refinement (Top-level

objects, refined objects, atomic objects) to link these objects and establish dependencies

(both primary dependencies and secondary dependencies) between the objects.

Dependency Rules are recorded within the object attributes. For instance, step

attributes might consist of the following: version and variation number, status,

predecessor, priority, deadline, estimated duration, earliest start time, finish time,

evaluation, manager, organizer, evaluator. Component attributes might consist of the

following: version and variation number, hypertext, code, data, pictures, charts, movies,

etc.

2. Important Definitions in the RH Model

Harn provides the following definitions of key entities within the RH model of

software evolution [HARN99b]. Since the RH model forms the core of how software

development artifacts are represented within the HFSE, the following definitions provide

a foundation for the entities used in the HFSE:

 122

Definition 1. (Hypergraph) [HARN99b] applied the [BERG89] definition of the

hypergraph as follows: A (directed) hypergraph is a tuple (, , ,) H N E I O= where

1. N is a set of nodes,
2. E is a set of hyperedges,
3. : 2NI E → is a function giving the set of inputs of each hyperedge, and
4. : 2NO E → is a function giving the set of outputs of each hyperedge.

Definition 2. (Evolutionary Hypergraph) [HARN99b] An evolutionary

hypergraph is a labeled, directed, and acyclic hypergraph (, , ,) H N E I O= together

with labeling functions : NL N C→ and :EL E A→ such that the following is true:

1. The elements of N represent unique identifiers for software evolution
components,

2. The elements of E represent unique identifiers for software evolution steps,
3. The functions I and O give the inputs and outputs of each software evolution

step, such that () () O e O e e e′ ′∩ ≠ ∅ ⇒ = ,
4. The function LN labels each node with component attributes from the set C,

including the corresponding version of the software evolution component, and
5. The function LE labels each edge with step attributes from the set A, including

the current status of the software evolution step, such that { , }A s d A′= ⋅ (that
is, each element of A has the form (,) or (,)s a d a′ ′ , where a A′ ′∈).

Definition 3. (Relational Hypergraph) [HARN99b] An evolutionary

hypergraph (, , ,) H N E I O= is called a relational hypergraph if and only if for every

hyperedge e in H and every input node n in I(e), the relationship between n and e is

primary_input or secondary_input.

Definition 4. (Primary and Secondary Dependency) [HARN99c] If an input

node and an output node of an evolutionary hyperedge are different versions of the same

component, then the path from the input node via the hyperedge to the output node of the

step is called a primary-input-driven path, and the relationship between the input node

and the step is called a primary_input dependency. If an input node and an output node

of an evolutionary hyperedge are different components, then the path from the input node

 123

via the hyperedge to the output node is called a secondary-input driven path, and the

relationship between the input node and the step is called a secondary_input dependency.

As an example, Figure 38 illustrates a portion of a Relational Hypergraph model

for a software system.

Figure 38 Sample Relational Hypergraph (from [HARN99c])

Definition 5. (Top-Level Evolution Step) [HARN99c] Let (, , ,) H N E I O= be

an evolutionary hypergraph. A hyperedge e E∈ is called a top-level evolution step if and

only if the hyperedge e has no parent evolution step.

Definition 6. (Atomic Evolution Step) [HARN99c] Let (, , ,) H N E I O= be

an evolutionary hypergraph. A hyperedge e E∈ is called an atomic evolution step if and

only if the hyperedge e cannot be expanded to additional steps and its output set has at

most one component.

Definition 7. (Top-level Evolutionary Hypergraph) [HARN99c] A top-level

evolutionary hypergraph is an evolutionary hypergraph (, , ,) H N E I O= , each of

whose hyperedges is a top-level evolution step.

 124

3. Embedding QFD within the Relational Hypergraph Software
Evolution Model

 Actually embedding key portions of the QFD methodology within the Relational

Hypergraph model requires several additions and changes to the RH model of software

evolution proposed by [HARN99c].

a. Project Schema
The HFSE relies on a project schema as an initial basis for a particular

software development process. This schema can be viewed as an abstract representation

of the different types of artifacts and different activities within a software development

effort. The “Waterfall Model,” “Spiral Model,” and “Evolutionary Process Model” are

general examples of project schemas; however, a software engineer should explicitly

identify the types of artifacts (components) and activities (steps) within their particular

HFSE project schema. Formally, a project schema is a top-level evolutionary hypergraph

expressed as follows:

Definition 8. (Project Schema) A project schema is the top-level evolutionary

hypergraph (, , ,) H N E I O= of a particular software development effort.

b. QFD Dependency
Rather than relying on the matrix scheme produced by [AKAO90] or

[ZULT90] Lamia proposes a different notation for the labeling of QFD matrices

[LAMI95]; this notation will be adopted for the remainder of this dissertation. Lamia

simply uses a "A x B" notation where A is the type of artifact/component on the left hand

side of the QFD matrix and B is the artifact/component across the top of the matrix (e.g. a

Risk to Specification matrix would be labeled "Risk x Specification", or the "roof"

portion of the matrix would be labeled "Specification x Specification"). This leads us to

define the relationship between any two sets of components as a QFD Correlation. A

QFD Dependency is a particular type of relationship that exists between components.

These are formally defined as follows:

Definition 9. (QFD Correlation) Let (, , ,) H N E I O= be a relational

hypergraph and 1 2 and C N C N⊂ ⊂ be two sets of components in the hypergraph where

 125

every element of C1 is of the same type and every element of C2 is of the same type. If

there exists a hyperedge between C1 and C2 then the QFD Correlation for the QFD

matrix C1 x C2 is the adjacency matrix C1xC2M between C1 and C2 such that nonzero

values in C1xC2M represent the strength of relation between adjacent components.

Definition 10. (QFD Dependency) Let (, , ,) H N E I O= be a relational

hypergraph and 1 2{ , , , } mC c c c N= ⊂… be a set of components in the hypergraph of the

same type. A QFD Dependency D is an attribute of C such that for each

1 , ()i ii m D c d≤ ≤ = ∈ .

Definition 11. (QFD Dependency Deployment) Let (, , ,) H N E I O= be a

relational hypergraph and 1 2 and C N C N⊂ ⊂ be two disjoint sets of components in the

hypergraph where every element of C1 is of the same type and every element of C2 is of

the same type. If there exists a hyperedge between C1 and C2 and a QFD Dependency

()id=1D on C1, then the QFD Dependency Deployment for the QFD matrix C1 x C2 is the

vector () such that and j j i
j i

d d d= = =∑ ∑2 2 1 C1xC2D D D M .

B. THE MATHEMATICS OF DEPENDENCY DEPLOYMENT

Underlying the deployment of any dependency is a sequence of matrix

multiplications that follow from the values of the particular dependency and the values of

the correlation matrix associated with the two components that the dependency is to be

deployed across.

1. Deployment Equations
First consider a typical "downstream" deployment of dependency from

component A to component D as illustrated in the QFD matrix in Table 10.

 D1 D2 D3 D4
 d1 d2 d3 d4
A1 a1 b11 b12 b13 b14
A2 a2 b21 b22 b23 b24
A3 a3 b31 b32 b33 b34

Table 10 "Downstream" Dependency Deployment

 126

Let A be a vector of values of a particular QFD Dependency of order m (see

Equation 4).

 []1 2, , , ma a a=A … Equation 4

As expressed in Equation 5, let c0 be a scalar equal to the sum of those

dependencies (in essence this becomes the "amount" of the dependency to be deployed

across the design).

 0
1

m

i
i

c a
=

= ∑ Equation 5

Let B be the QFD Correlation matrix between two sets of components of order

m x n as expressed in Equation 6.

11 12

21 22

mn

b b
b b

b

 =

B Equation 6

As expressed in Equation 7, let E be the vector result of AB with order n, and let

c1 be the scalar sum of the values of E.

 1
1

 and
n

j
j

c e
=

= ∑E = AB Equation 7

To maintain a constant value of the dependency during the deployment, D is the

vector result of the dependency deployment and is normalized with respect to c0 as

expressed in Equation 8.

 0
3 0

11

 and
n

j
j

c c d c
c =

= = =∑D Ε Equation 8

Note that c3 = c0 (the "amount" of the dependency remains constant throughout the

deployment).

What remains is to determine whether it is possible to deploy a dependency

backwards (upstream) through a QFD matrix (i.e. is it possible to find the original A,

given dependencies D and correlations B -- see example in Table 11).

 127

 D1 D2 D3 D4
 d1 d2 d3 d4
A1 a1 b11 b12 b13 b14
A2 a2 b21 b22 b23 b24
A3 a3 b31 b32 b33 b34

Table 11 "Upstream" Dependency Deployment

To investigate whether this is possible, consider the following derivation. Combining

Equation 7 and Equation 8 then solving for A leads to Equation 9.

 0

1

c
c

=D AB Equation 9

If B-1 exists, rearranging terms and taking advantage of the fact that c0 = c3, leaves

Equation 10.

 1

3

c
c

= -1A DB Equation 10

But there are two problems with Equation 10. First, seldom will B be square and

invertible (thus our assumption that B-1 exists is likely invalid) and secondly, there is no

way to determine the value of c1 without knowledge of A (recall Equation 7).

This second dilemma remains even if a right pseudo-inverse for a non-square B is

found and used. To illustrate this dilemma, consider the following derivation. By

definition let +
RB be the right pseudo-inverse of B as shown in Equation 11. Following

from Equation 9 leads to Equation 12.

 =+
RBB I Equation 11

 0

1

c
c

=+ +
R RDB ABB Equation 12

Rearranging terms and taking advantage of the fact that c0 = c3, leaves Equation 13.

 1

3

c
c

= +
RA DB Equation 13

The dilemma with finding the inverse of B has been solved but the dilemma of not being

able to determine the value of c1 without knowledge of A remains.

 128

 2. Downstream Dependency Deployment Example
The above relationships for deploying dependency across a QFD matrix can be

illustrated with the following small example.

Suppose that the software customer would like to deploy a value of risk

associated with requirements across the design to specifications (see Figure 39).

Cust
Rqts SpecsDevelop Specs

Figure 39 Deployment of Risk Example

Suppose there are three requirements {R1, R2, R3} with associated risk values of

{5, 1, 3} and these are to be deployed across four specifications {S1, S2, S3, S4} (see

Equation 14).

 [] 0
1

5 1 3 and 9
m

i
i

c a
=

= = =∑A Equation 14

Further suppose that the associated QFD Correlation matrix between the three

requirements and the four specifications is as shown in Equation 15.

0 1 0 3
3 1 0 0
0 0 9 0

 =

B Equation 15

Thus, the House of Quality prior to the deployment of risk would look as shown

in Table 12, where D = (dj) is the vector of Specification Risk that is sought.

 Specs S1 S2 S3 S4
Rqt Risk d1 d2 d3 d4
R1 5 0 1 0 3
R2 1 3 1 0 0
R3 3 0 0 9 0

Table 12 QFD Matrix for Risk Deployment Example

The underlying Hypergraph for this QFD matrix is illustrated in Figure 40 and the

underlying weighted digraph for the correlation matrix is illustrated in Figure 41.

 129

R1

R2

R3

S1

S2

S3

S4

Develop
Specs

Figure 40 Hypergraph Representation of the QFD Example

R1

R2

R3

S1

S2

S3

S4

Develop
Specs

3

3

1

9

1

Figure 41 Weighted Digraph Representation of the QFD Example

Using Equation 7 and Equation 8 to calculate D (rounded to two decimal places)

leads to Equation 16 and Equation 17.

[]

1
1

3 6 27 15
 and

51
n

j
j

c e
=

=

= =∑

E = AB
 Equation 16

 []0

1

9 .53 1.06 4.76 2.65
51

c
c

= = =D E E Equation 17

 130

This gives us a clear picture of how the customer's view of risk associated with

the three requirements is "deployed" to the four specifications of the design. It intuitively

follows that since requirements R1 and R3 had the greatest risk (5 and 3 respectively) and

that they map most strongly to specifications S3 and S4 that these two specifications

would end up having the greatest risk.

But is it possible to go backwards, e.g. given the specification risk expressed in

Equation 17, is it possible to back-out the customer's initial values of risk for the

requirements? The answer, of course, is no -- given the conclusion arrived at in

Equation 10 and Equation 13. Because of the lack of independence in the matrix product

E, there is no way for us to arrive at a value of 51 for c1.

3. Upstream Deployment of Dependency
The implication of this is significant when put in a software engineering context

within the HFSE. It means that the initial input values of dependency are anchored to a

particular component of origin. The dependency can be deployed forward from this

origin as shown above in Equation 4 through Equation 8. However, values downstream

from the origin (forward along the path of development) cannot be modified and then

reliably deployed backwards through the matrices to the origin. The best that can be

achieved is to create a new dependency at that point (the point of dependency

modification) and deploy that dependency backward through the design but using the

forward calculations expressed in Equation 4 through Equation 8. In order to account for

the proper order of D and B, the transpose BT of the correlation matrix B is used. For

instance, given D and B we would arrive at vector A as shown through Equation 18 and

Equation 19.

 4
1

 and
n

j
j

c f
=

= ∑TF = DB Equation 18

 3
0 3

4

 and c c c
c

= =A F Equation 19

In our example above, suppose that the values of risk that were arrived at in

Equation 17 were actually original risk values determined by the software developer

based on his assessment of how the project might fail while implementing those

 131

specifications. The developer then wants to know how that risk deploys backwards

(upstream in the development effort) to the customer's requirements so that he can

identify the requirements that have the greatest impact on his view of risk. Applying

Equation 18 and Equation 19 to D and B leads to Equation 20, Equation 21, and

Equation 22.

[]

[]

0 3 0
1 1 0
0 0 9

.53 1.06 4.76 2.65 3 0 0

 = 9.01 2.65 42.84

 =

TF = DB
 Equation 20

 4
1

54.5
n

j
j

c f
=

= =∑ Equation 21

 []3

4

9 1.49 .44 7.07
54.5

c
c

= = =A F F Equation 22

Note that the result from Equation 22 is not at all similar to the vector in

Equation 14. From the developer's point of view it is requirement R3 (not requirement

R1) that presents the greatest risk (this follows from the fact that specification S3 had

such a relatively high value of risk and was so highly coupled to requirement R3).

 4. Other Means of Deploying Dependencies: Constant Range
In deriving Equation 8 a key assumption was made that the "amount" of the

dependency would remain constant across the deployment. This assumption impacts the

deployment by either "thinning-out" the dependency when it is deployed across

numerous components (from a few components) (see example in Table 13) or

"concentrating" the dependency on just a few components (when deployed from many

components) (see example in Table 14).

 132

 Specs S1 S2 S3 S4 S5 S6 S7 S8 S9 S10
Rqt .41 .48 1.85 1.03 .14 .34 .41 3.08 .41 1.85
R1 5 0 1 0 3 0 1 0 9 0 0
R2 2 3 1 0 0 1 0 3 0 3 0
R3 3 0 0 9 0 0 0 0 0 0 9

Table 13 Dependency Thinning (Dependency = 10)

 Specs S1 S2 S3
Rqt 6.33 7.85 25.82
R1 5 0 1 0
R2 1 3 1 0
R3 6 0 0 9
R4 2 0 9 0
R5 4 3 0 0
R6 1 9 0 0
R7 7 0 0 3
R8 2 0 3 0
R9 3 0 1 0
R10 9 1 0 3

Table 14 Dependency Concentration (Dependency = 40)

It is possible to use a different initial assumption when deploying the dependency:

instead of keeping the "amount" of the dependency constant, the "value range" of each

dependency could be kept constant. This would require the deployed dependency to be

normalized against the possible range of the dependency.

Let A be a vector of values of a particular dependency of order m and let depmin

and depmax be the possible minimum and maximum values of each ai as expressed in

Equation 23.

 []1 2 min max, , , , where :m ia a a i dep a dep= ∀ ≤ ≤A … Equation 23

As shown in Equation 24, let B be a matrix of correlation values between two

components of order m x n, and let cormin and cormax be the possible (not necessarily

actual) minimum and maximum values of each bij.

 133

11 12

21 22
min max such that , : ij

mn

b b
b b

i j cor b cor

b

 = ∀ ≤ ≤

B Equation 24

Let E be the vector result of AB with order n shown in Equation 26.

min min max max

and

: ()()() ()()()jj dep cor m e dep cor m∀ ≤ ≤

E = AB
 Equation 25

To maintain a constant range of values for the dependency during the deployment,

as shown in Equation 26 and Equation 27, D is the vector result of the dependency

deployment and is normalized with respect to the minimum and maximum possible

values of ej. These normalized values are added to the minimum dependency value

depmin.

 () minLet such that :j jg j g dep= ∀ =G Equation 26

max min

max max min min

min min

min max

()
[(*) (*)]()

 *[()()()]

and : j

dep dep
dep cor dep cor m

dep cor m

j dep d dep

 −
= −

− +

∀ ≤ ≤

D

Ε G Equation 27

In general QFD practice (as discussed in Chapter II) QFD correlation values are typically

0:1:3:9, thus cormin is usually zero. Since Equation 27 does not explicitly require this to

be the case, the engineer must select maximum and minimum dependency values and

correlation values with care to ensure that max max min min[(*) (*)] 0dep cor dep cor− ≠ .

To illustrate the use of this form of deployment, consider the application of

Equation 23 through Equation 27 to the QFD deployment presented in Table 12. Let A be

a vector of dependency values within the range [1, 7] and order m=3 and let B be matrix

of correlations within the range [0, 9]. This leads to the results in Equation 28 through

Equation 30.

 134

[] []

min max min max

0 1 0 3
5 1 3 , 3 1 0 0 , 1 1 1 1

0 0 9 0
1, 7, 0, 9dep dep cor cor

 = = =

= = = =

A B G
 Equation 28

 []3 6 27 15 =E = AB Equation 29

[]

max min

max max min min

min min

()
[(*) (*)]()

 *[()()()]

(7 1) = [(1*0*3)]
[(7*9) (1*0)](3)
6

189
 1.10 1.19 1.86 1.48

dep dep
dep cor dep cor m

dep cor m

 −
= −

− +

 −
− −

=

=

D

Ε G

E + G

E + G

 Equation 30

In examining the result of Equation 30 notice that the values did remain in the

range [depmin, depmax]. However, while these values were obtained through a sound

mathematical deployment methodology, the usefulness of such numbers in decision

support is questionable. These numbers become even more questionable as they are

deployed further and further through the design because they will continue to approach

depmin. The reason the values were particularly low (near depmin) and why they will

continue to get lower as they are further deployed is because of the relative sparseness of

the correlation matrix B. Such sparseness is characteristic of QFD correlation matrices

and makes the methodology expressed in Equation 23 through Equation 27 much less

useful from a decision support perspective than the methodology expressed in Equation 4

through Equation 8.

While it is possible to account for this sparseness by using the values of emax and

emin (from ()je=E) in Equation 27 instead of max max min min(*) and (*)dep cor dep cor ,

respectively, another problem is introduced. Consider Equation 31.

 135

max min
min

max min

min max

() []
()

and : j

dep dep e
e e

j dep d dep

 −
= − + −

∀ ≤ ≤

D Ε G

 Equation 31

In this deployment scheme the deployed values that lead to D are normalized such that

the highest value of D assumes the value of depmax and the lowest values assumes the

value of depmin. The remaining values are spaced appropriately based on their ratio

within the range [depmin, depmax]. The shortcoming with this scheme is that it does not

preserve a sense of ratio from the boundaries of the range (i.e. any boundary that should

exist is lost in the deployment). A second and more minor shortcoming (since it is

unlikely to occur in actual practice) is that if all of the values of E are the same, then

emax = emin and the denominator of Equation 31 goes to zero making the result undefined.

Since the reason for the deployment of dependencies is for decision support, the

HFSE will rely on the "constant dependency amount" methodology specified in

Equation 4 through Equation 8 as opposed to the "constant dependency range"

methodology specified in Equation 23 through Equation 27 or the methodology in

Equation 31. This still leaves, however, the dilemma of how to make use of the deployed

dependencies subject to dependency "thinning" and dependency "concentration" (recall

Table 13 and Table 14).

5. Other Mathematical Checks
There are other mathematical checks that can be performed on a QFD matrix to

ensure that it is consistent. For instance, it is possible to examine the columns of a QFD

matrix to determine if any superfluous artifacts have been created. It is also possible to

perform a "coverage" check of the QFD Correlation matrix to provide visibility as to

whether the "how" components adequately implement the "what" components of the

design.

a. Superfluous Artifact Analysis
The purpose of superfluous artifact analysis is to determine if there are

artifacts in the design that are not needed and have been erroneously introduced. This

analysis is conducted by looking for discrepancies in column values of the QFD

Correlation matrix. A complete column of zero valued correlations is an indication of a

 136

mistake in the design: either a correlation value was mistakenly omitted, or the “how”

artifact itself is superfluous to the design. As an example, consider the QFD matrix

shown in Table 15 in which the QFD Dependency “Requirements Priority” has been

deployed downstream to specifications.

 Specs S1 S2 S3 S4 S5
Rqts Priority 1.4 2.8 4.2 0 3.6
R1 5 0 1 0 0 0
R2 1 1 9 9 0 0
R3 2 3 0 0 0 3
R4 4 0 0 3 0 3

Table 15 QFD Coverage Analysis Example

Note that the correlation column of S4 has only zeros for values. Since the overall

purpose of the Specifications is to implement the stated requirements, this column of

zeros indicates that either the engineer made a mistake in assigning correlation values or

that S4 is superfluous to the design. The “0” value of the deployed priority dependency

value for S4 suffices as a “red flag” for the engineer. The engineer should question

whether or not S4 is needed in the design and if so, which requirements are driving that

need.

b. Coverage Analysis
The purpose of performing a QFD coverage analysis is to determine if

adequate “hows” have been specified for implementing the “whats” in the QFD process

(e.g. have adequate specifications been identified for implementing the requirements).

“Adequate” in this case refers to whether the “how” artifacts are sufficient in quantity and

quality to fully implement the “what” artifacts. [ZULT92] proposes that the coverage

analysis be performed by summing the rows of the QFD Correlation matrix, normalizing

the result, and then comparing these normalized values against the relative weights of the

"what" components. They should generally be the same. Mismatches are indications that

either more (or stronger) "hows" are needed to implement a particular "what" or that

there are too many (or too strong) "hows" that implement a "what".

As an example of coverage analysis, continue to consider the QFD matrix

presented previously in Table 15. Summing the correlation values by row and

 137

normalizing, then comparing them side-by-side with normalized values of the

Requirements priorities indicates several additional problems; consider the results in

Table 16.

 Normalized Rqts
Priority Values

Normalized
Correlation Row

Sums
R1 0.417 0.031
R2 0.083 0.594
R3 0.167 0.187
R4 0.333 0.187

Table 16 Coverage Analysis Example: Side-by-Side Comparison

It is clear that the requirement R1 (the most important requirement) has been severely

underrepresented in specifications and that R2 (the least important requirement) has been

significantly over-represented as indicated by the large difference in normalized values

corresponding to these two requirements. The software engineer should reconsider the

correlation values established in Table 15. The engineer might also want to identify

additional specifications needed to fully implement R1. Now consider the adjusted QFD

matrix in Table 17 and the corresponding side-by-side coverage analysis values in Table

18.

 Specs S1 S2 S3 S4 S5
Rqts Priority 0.75 0.64 3.86 4.82 1.93
R1 5 0 1 0 9 0
R2 1 1 1 0 0 0
R3 2 3 0 0 0 3
R4 4 0 0 9 0 3

Table 17 QFD Coverage Analysis Example

 138

 Normalized Rqts
Priority Values

Normalized
Correlation Row

Sums
R1 0.417 0.333
R2 0.083 0.067
R3 0.167 0.200
R4 0.333 0.400

Table 18 Coverage Analysis Example: Side-by-Side Comparison

The side-by-side comparison in Table 18 reveals a much more consistent result. While

the qualitative assessment illustrated in the above example demonstrates the coverage

analysis concept, the technique can be supplemented with a more sophisticated statistical

analysis such as hypothesis testing using a “Paired t Test” [DEVO00]. Although outside

the scope of this dissertation, such analysis can give the engineer ever increasing

confidence of adequate coverage of downstream components within the software design.

C. MAKING USE OF DEPLOYED DEPENDENCIES
The goal of deploying dependencies across the design is to allow the software

engineer the ability to visualize "slices" of the design that have particular meaning. For

example, if the engineer has deployed customer risk throughout the design, he may want

to do the following:

• Identify all components that have a relatively high value of customer risk
("relatively" being defined by some user specified threshold value).

• After identifying a particular component (say, with high risk) identify all
strongly (or weakly, or any) connected components that trace to that
component. The strength of connectivity used in the search is defined by
the user specified threshold value.

These two techniques are named Dependency Threshold and Component Trace,

respectively.

1. Dependency Threshold
Since the range of dependency values varies widely between groups of

components (recall dependency "thinning" and "concentrating"), it is generally not

sufficient to simply specify a particular value of dependency and then isolate all

components within each group of components that have dependency values greater than

 139

or less than that value. However, since each group of components has been normalized

within the group, it is possible to isolate those components that are greater than or less

than some specified value related to their mean and standard deviation. Let t be the

dependency threshold value specified against the mean and standard deviation of each

group of components as shown in Equation 32.

 where is a user specified value and
 identifies a particular set of components.

i it x
x
i

µ σ= ±

 Equation 32

As an example, consider the QFD deployment example previously presented in

Table 12 and shown below in Figure 42 (dependency values of risk are shown in

parentheses).

R1
(5)

R2
(1)

R3
(3)

S1
(.53)

S2
(1.06)

S3
(4.76)

S4
(2.65)

Develop
Specs

Figure 42 Hypergraph with Risk Dependency Values

The requirements components and specification components have mean and

standard deviations as shown in Equation 33.

3 and 1.63
2.25 and 1.65

R R

S S

µ σ
µ σ

= ≈
= ≈

 Equation 33

Applying the "Dependency Threshold" view, Figure 43 illustrates the remaining

subgraphs if the underlying hypergraph is trimmed at thresholds of and i i it tµ µ σ= = + ,

respectively.

 140

R1
(5)

R3
(3)

S3
(4.76)

S4
(2.65)

Develop
Specs

R1
(5)

S3
(4.76)

Develop
Specs

µ≥ 1*µ σ≥ +

Figure 43 Subgraphs Trimmed with Dependency Threshold

From a decision support perspective, the Dependency Threshold view of the

underlying hypergraph allows a software engineer to easily identify particular subgraphs

of interest. It is relatively easily to identify those components that have the greatest (or

least) dependency values and to base resource allocation decisions upon those views.

2. Component Trace
The Component Trace view of a hypergraph allows the software engineer to

identify all connected components of a single component based on a user-defined value

of connectedness. This technique assumes that the same ranges of values are used

throughout the hypergraph for relating the correlation between any two components.

Consider Figure 44, a weighted digraph representing a simple software development

process.

R1

R2

R3

S1

S2

S3

S4

Develop
Specs

3

3

1

9

1
A2

A3

A4

M1

M2

M3

M4

Define
SW Modules

3

3

1

9

1

A1

A5

Define
Architectural
Components

3

9

11

3

3
9

3
9

9

Figure 44 Weighted Digraph Example

 141

Component traces centered on component A3 with threshold values of 2 and 8 are

illustrated below in Figure 45 and Figure 46, respectively.

R1

R3

S3

S4

Develop
Specs

9

A3

M1Define
SW Modules

3Define
Architectural
Components

3

93

Figure 45 Component Trace from A3 with Threshold 2

R3

S3
9

A3

Define
Architectural
Components

9

Develop
Specs

Figure 46 Component Trace from A3 with Threshold 8

Again from a decision support perspective, the Component Trace view of the underlying

hypergraph allows a software engineer to easily identify particular subgraphs of interest.

Using such a view it is relatively easily to identify the potential knock-on effects

associated with changes to a particular component and to base resource allocation

decisions upon those potential effects.

D. ESTABLISHING DEPENDENCY VALUES
Central to the use of the QFD methodology within the HFSE is the concept of

dependency value deployment. "Setting priorities means advancing some actions and

postponing others" [ZULT93]. The design realities implied by this quotation are

substantial and while the actual dependency values used by the HFSE are developed in

external software development tools and then imported into the HFSE, the adage

“garbage in equals garbage out” holds true. Thus, if erroneous dependency values are

 142

imported into the HFSE and then deployed throughout the design, the engineer is likely

to make poor engineering decisions stemming from this data. Therefore, the concepts

underpinning what separates good dependency values from bad values are worthy of

review.

1. Scales of Measurement
In his seminal work, Stevens [STEV46, 51] provides what is now considered to

be the standard classification taxonomy for measuring both quantitative and qualitative

variables. His taxonomy of measurement consists of four different ways to use numbers

to measure everyday phenomena. These four ways of measurement consist of nominal,

ordinal, interval, and ratio.

a. Nominal

 In nominal measurement, numbers are simply used as labels for

identifying separate entities. They denote no additional information other than

identification. An example of a nominal measurement would be the random assignment

of a student identification number. The number serves no purpose other than to

distinguish one student from another and cannot be used to deduce which student is

smarter or which student is majoring in chemistry. From an HFSE dependency valuation

perspective, nominal values provide no useful information about software artifacts

(except to distinguish between artifacts) and thus should never be used as deployable

dependency values.

b. Ordinal
In ordinal measurement, entities are simply ordered in a particular way:

least to most, best to worst, worst to best, etc. In this case, it is possible to distinguish

which entity might be “better” than another, but it is not possible to distinguish how

much better. Values from an ordinal scale distinguish the direction of difference only.

An example of an ordinal measurement would be the assignment of finishing positions to

a set of racehorses completing a race. While it is possible to determine which horse

finished ahead of another, an ordinal scheme provides no information that would allow a

user to determine by how much one horse beat another. From an HFSE dependency

valuation perspective, ordinal values might provide some marginally useful information

about software artifacts differences but as discussed later, this information should be used

 143

cautiously and results based on this type of dependency calculation should be viewed

skeptically.

c. Interval

In interval measurement, the distance between two entities is established.

In this case, it is possible to distinguish which entity is better and by how much using a

scale consistent throughout the entire range of the scale. Interval scales do not have true

zero points. Temperature as measured in Fahrenheit or Celsius is an example of an

interval scale. Using an interval scale for temperature, it is possible to determine which

temperature is warmer than another and by how much, however, because of the lack of a

zero point it is meaningless to try to state that one temperature is twice as warm as

another. From an HFSE dependency valuation perspective, interval values provide useful

information about software artifacts and results stemming from interval values lead to

more dependable information that those generally achieved using an ordinal scale.

d. Ratio

 Just as in the interval scale, in a ratio scale numbers tell the direction and

relative distance between entities being measured. Additionally, however, ratio scales

enjoy the presence of an absolute zero so that it is possible to compare entities in terms of

proportions, percentages, and ratios. Measures of distance and mass are examples of

ratio valuations. In measuring length, it is possible to distinguish which length is greater,

by how much, and by what percentage (e.g., a yardstick is longer than a ruler, it is longer

by two feet, or it is 200% longer). From an HFSE dependency valuation perspective, ratio

values provide the best information about differences in the dependencies of software

artifacts and results stemming from ratio values lead to the most dependable information.

While Stevens’ measurement taxonomy [STEV46, 51] appears to be the most

widely used and accepted taxonomy, it is worth mentioning that there are some criticisms

of his taxonomy and that other taxonomies, besides his, do exist. Comparison of the

deficiencies and potential benefits to the HFSE of all of these taxonomies of

measurement is outside the scope of this dissertation; however, interested readers are

referred to [VELL93] which provides a broad overview of the issues involved.

 144

2. QFD Dependency Valuation
Following from Stevens’ measurement taxonomy [STEV46, 51], [COHE95]

discusses three different ways of establishing basic values for the priority values of a set

"whats" in the QFD valuation process: by Absolute Importance, by Relative Importance,

and by Ordinal Importance. In terms of Stevens’ taxonomy, these correspond to interval,

ratio, and ordinal, respectively.

a. Absolute Importance (Interval Valuation)
In using the Absolute Importance scheme, each dependency value is

established based on the user's view as to the value of the dependency compared to a set,

fixed, absolute scale. For instance, such a scale might be 1-5 as shown in Table 19.

Value Criteria
1 Not at all helpful
2 Of minor help
3 Of moderate help
4 Very helpful
5 Extremely helpful

Table 19 Example Absolute Importance Scale

Such values are usually obtained using a survey of the particular users in

which the respondents are asked to rate the importance of each item related to the

particular dependency under consideration. At first, one might wonder why this scale is

not considered a ratio scale since it appears to have an absolute zero. However, while the

interval values themselves are fixed, this lower bound is not actually absolute. For

example, there is nothing that prevents the user from later establishing a new fixed value,

for instance –3, for “Moderately unhelpful.” Such an addition would not affect the prior

valuations at all. A problem with this scheme is that users have a tendency to inflate such

ratings, viewing each dependency item as of moderate importance or greater [COHE95].

This has the effect of grouping the results and making them more difficult to interpret and

find logical breakpoints in the data. Table 20 is an example of applying the Absolute

Importance scheme to a set of specifications where the dependency under consideration is

"Difficulty of Implementation". In this case the implementers use a scale of 1 to 5 where

 145

1 corresponds to "easy to implement" and 5 corresponds to "extremely difficult to

implement.”

Specification # Difficulty

Specification 1.1 1
Specification 1.2 4
Specification 1.3 4
Specification 1.4 2
Specification 1.5 5

Table 20 Absolute Importance Valuation Scheme

Note that in such a scheme, it is possible for multiple components to have the same value

(e.g. Specifications 1.2 and 1.3 both have a value of 4).

b. Relative Importance (Ratio Valuation)
In using the Relative Importance scheme (also known as "ratio-scale

importance"), each dependency item is placed on a set 100 point or percentage scale. In

this method each dependency item is ranked ordered from least important to most

important and then the relative difference between the items is established (e.g. this item

is twice as important as the previous one, or this item is barely more important than the

previous one, etc.). Typical ranges of values are from about 40 to 85 [COHE95]. Table

21 is an example of applying the Relative Importance scheme to the same set of

specifications, again where the dependency under consideration is "Difficulty of

Implementation". In this case the implementers used a 100 point scale where the higher

the value, the more difficult the specification is to implement.

Specification # Difficulty

Specification 1.1 20
Specification 1.2 43
Specification 1.3 46
Specification 1.4 25
Specification 1.5 72

Table 21 Relative Importance Valuation Scheme

 146

c. Ordinal Importance (Ordinal Valuation)

A third scheme for establishing dependency values is the Ordinal

Importance scheme. In this scheme, the dependency items are simply arranged in order

from least importance to most important and assigned a value based on that order. For

instance, 10 items would receive values of 1 to 10 where 1 is the least important item and

10 is the most important item. The other items would receive an ordinal value based on

their order of placement. Table 22 is an example of applying the Ordinal Importance

scheme.

Specification # Difficulty

Specification 1.1 1
Specification 1.2 3
Specification 1.3 4
Specification 1.4 2
Specification 1.5 5

Table 22 Ordinal Importance Valuation Scheme

d. Comparison of Valuation Schemes
Dependency values are multiplied through the QFD Correlation matrix

and normalized to create values for the next set of downstream or upstream artifacts.

While the initial dependency values themselves may not have been generated using a

ratio scale, the fact that they get multiplied by the proportional values of the correlation

matrix and then normalized, means the values are used as if they were established using a

ratio scheme whether they were or not. Thus, the ratio of the range of potential values

becomes important and this range varies by the scheme. [COHE95] provides insight as

to the typical range of values for 20 items under evaluation in QFD processes. The

Absolute Value scale (with a scale of 1-5) will produce a scheme theoretically between 1-

5; but, in practice, this is about 3-5 or a ratio of 1:1.6. The Relative Value scheme

generally produces values in the range 40 to 85, a ratio of 1 to 2.1. The ordinal scheme

will produce values of 1 to 20, a ratio of 1:20. The ratios for the Absolute Value scale

and Relative Value scale remain fairly constant as the number of items being compared

increases; however, the ratio for the ordinal scale continues to grow -- imagine how large

 147

this ratio would be with several hundred items. Thus, using an ordinal scheme with many

components and deploying values through a correlation matrix will have the effect of

significantly over-emphasizing important “whats” and under-emphasizing least important

“whats”. Even though the use of ordinal value schemes is widespread and common in

QFD practice, their use should be viewed with skepticism.

The HFSE will take advantage of using dependency values established

from other software development tools. For instance, Requisite®Pro uses an absolute

(interval) scale for requirement priority (low, medium, high), and allows the user to

create user defined metrics based on Relative Value (ratio schemes). Traditional

Japanese QFD methodologies rely on using simple Absolute scales of 1-5, with

increasingly sophisticated methodologies (e.g. pairwise comparison) used to establish the

weights. However, there is evidence that even more complex methods are being used

such as the Analytic Hierarchy Process (AHP) [ZULT92], which is a methodology based

on ratio scales. [AKAO90] also recommends using AHP when additional rigor is

required to sort through and establish well-supported priorities upon which to base

decisions. While such techniques as AHP require significantly more effort, they provide

greater accuracy and support for consistency checking and sensitivity analysis.

In summary, many software development tools produce metrics that can

be imported into the HFSE and deployed throughout the development effort. However,

the engineer should be cognizant of the type of values being imported because the type of

value affects the accuracy and correctness of the decision support information later

produced from those values. Ordinal values may provide some useful indications, but the

engineer should be skeptical of basing critical or costly decisions upon them. Absolute

values (using interval scales) provide much better results and have been reliably used in

QFD practice [COHE95]. Relative values (using ratio scales) provide the best and most

mathematically sound valuation and results [SAAT80].

3. The Analytic Hierarchy Process (AHP)

a. The Normalized Principal Eigenvector of Priority Values
Saaty presents the Analytic Hierarchy Process (AHP) as a process to

establish ratio valuation of a group of items through the use of pairwise comparison

[SAAT80]. This is typically accomplished through the creation of a comparison matrix

 148

using a set Absolute Importance scale. Consider Table 23 in which four items (A, B, C,

and D) are compared to each other using the Absolute scale provided in Table 24.

Importance A B C D
A 1 5 6 7
B 1/5 1 4 6
C 1/6 1/4 1 4
D 1/7 1/6 1/4 1

Table 23 Example AHP Comparison Matrix (after [SAAT80])

Value Meaning
1 Equally Important
3 Weakly more important
5 Strongly more important
7 Very Strongly more important
9 Absolutely more important

Table 24 AHP Comparison Valuation Scheme

Table 23 illustrates the common form of an AHP comparison matrix: a right-hand

reciprocal matrix with values on the diagonal equal to 1. Typically, appropriate groups of

stakeholders subjectively establish each value above the diagonal; the actual minimum

number of comparisons needed to construct the matrix is 1n − since the diagonal values

and reciprocal values below the diagonal are forced.

The vector of priority values is derived from the normalized principle

eigenvector of the of this comparison matrix. A good approximation of this vector is

given by multiplying the n elements of each row of the matrix, taking the nth root of each

result, and then normalizing the resulting vector [SAAT80]. Consider Table 25, which

shows the approximate result from Table 23 side-by-side with the actual principal

eigenvector.

 149

Element Approximate
Result

Actual Normalized
Eigenvector

A 0.61 0.61
B 0.24 0.24
C 0.10 0.10
D 0.04 0.05

Table 25 AHP Example Normalized Priority Values

b. Consistency Checking of the Comparison Matrix
[SAAT80] also provides a sound methodology for confirming the

consistency of any set of subjectively derived valuations. Because more subjective

comparisons are input into the comparison matrix than are mathematically required

(2() / 2 versus 1n n n− −), the comparison matrix may become inconsistent and produce

inconsistent priority valuations. Saaty’s method for confirming consistency depends on

comparing the principal eigenvalue (maxλ) to n. The closer maxλ is to n, the more

consistent is the comparison matrix. The first step in confirming consistency is to

calculate the consistency index (C.I.) shown in Equation 34 [SAAT80].

 max()C.I.
(1)

n
n

λ −
=

−
 Equation 34

The C.I. is then compared to an empirically derived Random Index (R.I.), which is a

measure of the possible randomness of a comparison matrix. This comparison is called

the Consistency Ratio (C.R.) and is given by Equation 35.

 C.I.C.R.
R.I.

= Equation 35

Consistency Ratios of 0.10 or less are considered acceptable [SAAT80].

c. Hierarchical Clustering to Account for Non-Independence

The comparison matrix in Table 23 assumed that the four items were

independent and that subjective evaluations can be independently made between them.

However, what happens if the items are not independent of one another? Frequently,

software engineers are asked to provide valuations for hierarchical artifacts that are not

independent. Consider the small subset of requirements from the CARA Infusion Pump

 150

shown in Table 26 in which pertinent requirements information in located in all three

hierarchical levels.

Tag Requirement Name Requirement Description
FEAT7 Occlusion Line Monitoring The CARA will monitor the occlusion lines

whenever the pump is plugged in.
FEAT7.1 Occlusion Detected If an occlusion fault is detected
FEAT7.1.1 Occlusion Display Msg An appropriate error message should is

issued.
FEAT7.1.2 Occlusion Level 1 Alarm A level 1 alarm should is issued
FEAT7.1.3 Occlusion Terminate AC If an occlusion is detected while in auto-

control, CARA will terminate auto-control
Table 26 Excerpt from CARA Infusion Pump Requirements

In applying the AHP to this particular case, “clusters” are established to form groupings

of independent entities. The clusters here might be considered as {FEAT7} and

{FEAT7.1, 7.1.1, 7.1.2, 7.1.3}. After establishing the appropriate weightings between

these two clusters, the second cluster is considered separately and further clustered and

weighted as needed. The weighting of the higher hierarchy is divided among lower level

clusters. Consider the more complex example in Figure 47.

Clusters are used to establish
groups of independent entities

A1
A1.1
A1.1.1
A1.1.2
A1.2
A2
A3
A3.1
A3.2

Cluster1 0.50
A2 0.40
Cluster3 0.10

A1 0.00
A1.1 0.10
A1.1.1 0.05
A1.1.2 0.65
A1.2 0.20

A1 0.00
A1.1 0.10
A1.1.1 0.05
A1.1.2 0.65
A1.2 0.20

A1 0.00
A1.1 0.05
A1.1.1 0.025
A1.1.2 0.325
A1.2 0.10

A1 0.00
A1.1 0.05
A1.1.1 0.025
A1.1.2 0.325
A1.2 0.10

A3 0.10
A3.1 0.60
A3.2 0.30

A3 0.01
A3.1 0.06
A3.2 0.03

A2 0.40

Figure 47 AHP Clustering Example

 151

In this example, nine architectural entities are compared and weighted. Three initial

independent clusters are established and weighted (element A2 is considered its own

cluster). Clusters 1 and 3 are then separately and internally compared and weighted.

While the entities internal to the clusters might not strictly independent, it is generally

possible to evaluate the elements in clusters of nine items or less to determine the

contribution of each element towards the overall function of the cluster. The weighting

of the cluster is then applied to this internal comparison to arrive at a final weighted value

for each atomic component. [SAAT80] points out that clustering also serves a second

and important purpose and that is to decompose large, complex valuation problems into

smaller, more manageable pieces that can be easily understood by the human mind.

4. Subjectivity and Sensitivity Analysis
In any human centric activity requiring judgment, subjectivity is always present.

However, it is possible to account for this subjectivity through application of consistent

group decision processes and to then confirm results through use of sensitivity analysis.

Even though each person perceives the world slightly differently, it is possible to use

consensus-building techniques to produce results that are statistically consistent with the

overall perceptions of the group. [SAAT80] points out:

…if people do not know what they are talking about, there is no scale that
would make them look better. However, if people know something and
they want a measure of it, then there is no better way of getting these
judgments down than through a systematic procedure which facilitates
comparisons, and is in harmony with intuition and human feelings, and is
free of artificiality. If a person already knows the answer, he then has no
need for any scale…

As discussed in the previous section, AHP is a methodology specifically designed to use

groups of stakeholders to perform comparisons and arrive at statistically consistent

results. Such methods lend themselves to further evaluation through sensitivity analysis.

The purpose of performing a QFD sensitivity analysis is to determine how

sensitive the resulting deployed dependency values are to perturbations in correlation

values or in the initial dependency values. While considered an area of future research

(see Chapter IX) it should be possible to embed dedicated sensitivity analysis techniques

and algorithms into the tool support for the HFSE. Chapter VII discusses the current

 152

status of the tool support of the HFSE. While the tool currently does not contain

dedicated sensitivity functionality, the tool in its current state does provide a user the

ability undertake “trial-and-error” and “what-if” analysis in support of sensitivity analysis

of derived results. Such analysis allows users to identify, quantify, and understand the

bounds and limitations of the results provided by the HFSE.

E. CHAPTER SUMMARY
This chapter focused on identifying and discussing the key mathematical

constructs needed to represent the HFSE artifacts and perform QFD operations upon

them. The extensions to the RH model were defined and the mathematics supporting

QFD dependency deployment were presented and illustrated with examples. Alternative

deployment schemes were explored and explained. Mathematical techniques for

identifying, isolating, and viewing particular subgraphs of interest (induced from the

overall underlying hypergraph of the development effort) were presented. Dependency

valuation schemes were offered and compared. Finally, the topics of consistency and

subjectivity were discussed and techniques for dealing with them (e.g. Coverage

Analysis, the Analytic Hierarchy Process, Sensitivity Analysis, etc.) were provided.

 153

V. APPLICATION OF THE OBJECT-ORIENTED
METHODOLOGY FOR INTEROPERABILITY TO THE DOMAIN

OF SOFTWARE DEVELOPMENT TOOLS

A. CHAPTER OVERVIEW
In Chapter III, the underlying ontologies needed for establishing a Federation

Interoperability Object Model (FIOM) were developed. In this chapter, the focus is to

explain how the FIOM is actually constructed using those ontologies. Section B

describes the motivation and methodology. Section C illustrates the methodology

through the use of an example from the software development tool domain. Section D

discusses the steps that would be needed in order to add additional tools and development

artifacts (such as Rational Rose and pseudo-code) to an existing software development

tool FIOM. Section E identifies the remaining tasks that would need to be accomplished

in order to actually embed the generated translators from the OOMI IDE into software

development tool application add-ons. Section F points out some limitations and

challenges of the OOMI approach.

B. BUILDING A FEDERATION INTEROPERABILITY OBJECT MODEL

1. Motivation for the FIOM
[YOUN02b] defines the Object-Oriented Model for Interoperability (OOMI),

which relies on establishing a collection of objects that represent real-world entities to

provide interoperability between a specific set of heterogeneous systems. This collection

of objects is called a Federation Interoperability Object Model (FIOM). The OOMI

approach using the FIOM overcomes numerous challenges presented by the differences

in modeling between systems. [YOUN02b] provides a classification of these modeling

differences, paraphrased as follows:

• Heterogeneity of Hardware and Operating Systems: differences in the
hardware and operating system platforms encountered when integrating
autonomously developed systems.

• Heterogeneity of Organizational Models: differences in the conceptual
models used by autonomously developed systems; dissimilarities in the
database models used, such as network, hierarchical, relational, universal,
or object structured.

 154

• Heterogeneity of Structure: differences in structural composition, possible
schema mismatches, and variations due to the presence of implied
information.

• Heterogeneity of Presentation: differences due to domain mismatch
problems, the use of different units of measure, differences in precision,
disparate data types, and different field lengths or variations in integrity
constraints.

• Heterogeneity of Meaning: differences arising from the imprecise nature
of natural language for characterizing real-world entities.

• Heterogeneity of Scope: differences that arise from different perspectives
on what attributes a given application needs to capture about the real-
world entity being modeled.

• Heterogeneity of Level of Abstraction: differences in the level and degree
of aggregation of atomic data elements.

• Heterogeneity of Temporal Validity: differences in the time used by two
models to observe or record the state of real-world entities.

These modeling differences exist in heterogeneous systems of many domains. Even

though the OOMI was originally validated using an example from military C4I systems,

this same model can be applied to a different domain -- the domain of software

development tools and models.

The OOMI was developed because of numerous limitations in current approaches

to interoperability that failed to account for the many differences in modeling.

[YOUN02b] identifies these limitations as follows:

First, [traditional approaches to interoperability] do not provide a means
for resolving the complete spectrum of modeling differences found among
heterogeneous systems. Second, they do not provide assistance in
determining when different system models refer to the same entity from
the problem domain. Third, in order to access another component or
system’s state or exercise its behavior, most current approaches require the
requesting system to utilize the provider system’s model of its state or
behavior to access its information… Fourth, most approaches utilize a
direct point-to-point conversion process for resolving modeling difference
among systems vice a two-step conversion process using an intermediate
model… Fifth, most approaches provide no or limited support to
development of the translations required to resolve modeling differences
among systems. Finally, most approaches are concerned only with the
resolution of modeling differences for information exchanged among
systems and do not provide the capability for resolving possible
differences in the signatures used to access the behavior of corresponding
methods on different systems.

 155

The FIOM provides the mechanism for subordinate model interaction in the HFSE.

Translators generated using the FIOM provide run-time interaction between subordinate

models.

2. FIOM Construction Methodology
The construction methodology used to build and use a Software Development

Tool FIOM is illustrated in Figure 48.

Given the Ontology
Representations in
Protégé

Given the Ontology
Representations in
Protégé

SEATools XML Schema Excerpt
 <xs:schema elementFormDefault ="qualified " targetNamespace ="http://protege.stanford.edu/ "

xmlns:xs ="http://www.w3.org/2001/XMLSchema ">
 <xs:include schemaLocation ="file:///C:/Program_Files/Protege -2000/base.xsd ">
 </xs:include >
 <xs:complexType name ="DataFlowComponentType ">
 <xs:complexContent >
 <extension base ="THING">
 <xs:sequence >
 <xs:element fixed="STANDARD -CLASS " maxOccurs ="0" minOccurs ="0" name ="METACLASS " type ="xs:string "/>
 <xs:element minOccurs ="0" name ="label " type ="xs:string "/>
 <xs:element maxOccurs ="0" minOccurs ="0" ref ="SEPARATOR "/>
 </xs:sequence >
 </extension >
 </xs:complexContent >
 </xs:complexType >
 <xs:complexType name ="EdgeType ">
 <xs:complexContent >
 <extension base ="DataFlowComponentType ">
 <xs:sequence >
 <xs:element fixed="STANDARD -CLASS " maxOccurs ="0" minOccurs ="0" name ="METACLASS " type ="xs:string "/>
 <xs:element minOccurs ="0" name ="edgeID " type ="xs:integer "/>
 <xs:element maxOccurs ="0" minOccurs ="0" ref ="SEPARATOR "/>
 </xs:sequence >
 </extension >
 </xs:complexContent >
 </xs:complexType >
 <xs:complexType name ="VertexType ">
 <xs:complexContent >
 <extension base ="DataFlowComponentType ">
 <xs:sequence >
 <xs:element fixed="STANDARD -CLASS " maxOccurs ="0" minOccurs ="0" name ="METACLASS " type ="xs:string "/>
 <xs:element maxOccurs ="unbounded " minOccurs ="0" name ="finishWithinReqmts " type ="xs:string "/>
 <xs:element minOccurs ="0" name ="formalDesc " type ="xs:string "/>
 <xs:element minOccurs ="0" name ="informalDesc " type ="xs:string "/>
 <xs:element maxOccurs ="unbounded " minOccurs ="0" name ="mcpReqmts " type ="xs:string "/>
 <xs:element maxOccurs ="unbounded " minOccurs ="0" name ="metReqmts " type ="xs:string "/>
 <xs:element maxOccurs ="unbounded " minOccurs ="0" name ="mrtReqmts " type ="xs:string "/>
 <xs:element maxOccurs ="unbounded " minOccurs ="0" name ="periodReqmts " type ="xs:string "/>
 <xs:element maxOccurs ="unbounded " minOcc urs="0" name ="specReqmts " type ="xs:string "/>
 <xs:element maxOccurs ="unbounded " minOccurs ="0" name ="triggerReqmts " type ="xs:string "/>
 <xs:element minOccurs ="0" name ="vertexID " type ="xs:integer "/>
 <xs:element maxOccurs ="0" minOccurs ="0" ref ="SEPARATOR "/>
 </xs:sequence >
 </extension >
 </xs:complexContent >
 </xs:complexType >
 <xs:complexType name ="seatools_specOntologyType ">
 <xs:sequence >
 <xs:element maxOccurs ="unbounded " minOccurs ="0" name ="Slot " type ="SlotType "/>
 <xs:element maxOccurs ="unbounded " minOccurs ="0" name ="SlotOverride " type ="Slot_Override_Type "/>
 <xs:element maxOccurs ="unbounded " minOccurs ="0" name ="DataFlowComponent " type ="DataFlowComponentType "/>
 <xs:element maxOccurs ="unbounded " minOccurs ="0" name ="Edge " type="EdgeType "/>
 <xs:element maxOccurs ="unbounded " minOccurs ="0" name ="Vertex " type ="VertexType "/>
 </xs:sequence >
 </xs:complexType >
 <xs:element name ="seatools_specOntology " type ="seatools_specOntologyType ">

</xs:element >

 <xs:schema elementFormDefault ="qualified " targetNamespace ="http://protege.stanford.edu/ "
xmlns:xs ="http://www.w3.org/2001/XMLSchema ">
 <xs:include schemaLocation ="file:///C:/Program_Files/Protege -2000/base.xsd ">
 </xs:include >
 <xs:complexType name ="RequirementType ">
 <xs:complexContent >
 <extension base ="THING">
 <xs:sequence >
 <xs:element fixed ="STANDARD -CLASS " maxOccurs ="0" minOccurs ="0" name ="METACLASS " type ="xs:string "/>
 <xs:element minOccurs ="0" name ="Name " type ="xs:string "/>
 <xs:element minOccurs ="0" name ="Tag " type ="xs:string "/>
 <xs:element minOccurs ="0" name ="Text " type ="xs:string "/>
 <xs:element maxOccurs ="0" minOccurs ="0" ref ="SEPARATOR "/>
 </xs:sequence >
 </extension >
 </xs:complexContent >
 </xs:complexType >
 <xs:complexType name ="SpecificationType ">
 <xs:complexContent >
 <extension base ="THING">
 <xs:sequence >
 <xs:element fixed ="STANDARD -CLASS " maxOccurs ="0" minOccurs ="0" name ="METACLASS " type ="xs:string "/>
 <xs:element minOccurs ="0" name ="Name " type ="xs:string "/>
 <xs:element maxOccurs ="unbounded " minOccurs ="0" name ="Required_By " type ="xs:string "/>
 <xs:element minOccurs ="0" name ="Tag " type ="xs:string "/>
 <xs:element minOccurs ="0" name ="Text " type ="xs:string "/>
 <xs:element maxOccurs ="0" minOccurs ="0" ref ="SEPARATOR "/>
 </xs:sequence >
 </extension >
 </xs:complexContent >
 </xs:complexType >
 <xs:complexType name ="tool_reqt_specOntologyType ">
 <xs:sequence >
 <xs:element maxOccurs ="unbounded " minOccurs ="0" name ="Slot " type ="SlotType "/>
 <xs:element maxOccurs ="unbounded " minOccurs ="0" name ="SlotOverride " type ="Slot_Override_Type "/>
 <xs:element maxOccurs ="unbounded " minOccurs ="0" name ="Requirement " type ="RequirementType "/>
 <xs:element maxOccurs ="unbounded " minOccurs ="0" name ="Specification " type ="SpecificationType "/>
 </xs:sequence >
 </xs:complexType >
 <xs:element name ="tool_reqt_specOntology " type ="tool_reqt_specOntologyType ">
 </xs:element >

SW Development Tool XML Schema Excerpt

RequisitePro XML Schema Excerpt
 <xs:schema elementFormDefault ="qualified " targetNamespace ="http://protege.stanford.edu/ " xmlns:xs ="http://www.w3.org/2001/XMLSchema ">

 <xs:include schemaLocation ="file:///C:/Program_Files/Protege -2000/base.xsd ">
 </xs:include >
 <xs:complexType name ="RequirementType ">
 <xs:complexContent >
 <extension base ="THING">
 <xs:sequence >
 <xs:element fixed ="STANDARD -CLASS " maxOccurs ="0" minOccurs ="0" name ="METACLASS " type ="xs:string "/>
 <xs:element minOccurs ="0" name ="Name " type ="xs:string "/>
 <xs:element minOccurs ="0" name ="Tag " type ="xs:string "/>
 <xs:element minOccurs ="0" name ="Text" type ="xs:string "/>
 <xs:element maxOccurs ="0" minOccurs ="0" ref ="SEPARATOR "/>
 </xs:sequence >
 </extension >
 </xs:complexContent >
 </xs:complexType >
 <xs:complexType name ="reqpro_reqtOntologyType ">
 <xs:sequence >
 <xs:element maxOccurs ="unbounded " minOccurs ="0" name ="Slot" type ="SlotType "/>
 <xs:element maxOccurs ="unbounded " minOccurs ="0" name ="SlotOverride " type ="Slot_Override_Type "/>
 <xs:element maxOccurs ="unbounded " minOccurs ="0" name ="Requirement " type ="RequirementType "/>
 </xs:sequence >
 </xs:complexType >
 <xs:element name ="reqpro_reqt Ontology " type ="reqpro_reqtOntologyType ">
 </xs:element >
</xs:schema >
</xs:schema >

CCR and FCR
XML Schemas
are Created

SEATools XML Schema Excerpt
 <xs:schema elementFormDefault ="qualified " targetNamespace ="http://protege.stanford.edu/ "

xmlns:xs ="http://www.w3.org/2001/XMLSchema ">
 <xs:include schemaLocation ="file:///C:/Program_Files/Protege -2000/base.xsd ">
 </xs:include >
 <xs:complexType name ="DataFlowComponentType ">
 <xs:complexContent >
 <extension base ="THING">
 <xs:sequence >
 <xs:element fixed="STANDARD -CLASS " maxOccurs ="0" minOccurs ="0" name ="METACLASS " type ="xs:string "/>
 <xs:element minOccurs ="0" name ="label " type ="xs:string "/>
 <xs:element maxOccurs ="0" minOccurs ="0" ref ="SEPARATOR "/>
 </xs:sequence >
 </extension >
 </xs:complexContent >
 </xs:complexType >
 <xs:complexType name ="EdgeType ">
 <xs:complexContent >
 <extension base ="DataFlowComponentType ">
 <xs:sequence >
 <xs:element fixed="STANDARD -CLASS " maxOccurs ="0" minOccurs ="0" name ="METACLASS " type ="xs:string "/>
 <xs:element minOccurs ="0" name ="edgeID " type ="xs:integer "/>
 <xs:element maxOccurs ="0" minOccurs ="0" ref ="SEPARATOR "/>
 </xs:sequence >
 </extension >
 </xs:complexContent >
 </xs:complexType >
 <xs:complexType name ="VertexType ">
 <xs:complexContent >
 <extension base ="DataFlowComponentType ">
 <xs:sequence >
 <xs:element fixed="STANDARD -CLASS " maxOccurs ="0" minOccurs ="0" name ="METACLASS " type ="xs:string "/>
 <xs:element maxOccurs ="unbounded " minOccurs ="0" name ="finishWithinReqmts " type ="xs:string "/>
 <xs:element minOccurs ="0" name ="formalDesc " type ="xs:string "/>
 <xs:element minOccurs ="0" name ="informalDesc " type ="xs:string "/>
 <xs:element maxOccurs ="unbounded " minOccurs ="0" name ="mcpReqmts " type ="xs:string "/>
 <xs:element maxOccurs ="unbounded " minOccurs ="0" name ="metReqmts " type ="xs:string "/>
 <xs:element maxOccurs ="unbounded " minOccurs ="0" name ="mrtReqmts " type ="xs:string "/>
 <xs:element maxOccurs ="unbounded " minOccurs ="0" name ="periodReqmts " type ="xs:string "/>
 <xs:element maxOccurs ="unbounded " minOcc urs="0" name ="specReqmts " type ="xs:string "/>
 <xs:element maxOccurs ="unbounded " minOccurs ="0" name ="triggerReqmts " type ="xs:string "/>
 <xs:element minOccurs ="0" name ="vertexID " type ="xs:integer "/>
 <xs:element maxOccurs ="0" minOccurs ="0" ref ="SEPARATOR "/>
 </xs:sequence >
 </extension >
 </xs:complexContent >
 </xs:complexType >
 <xs:complexType name ="seatools_specOntologyType ">
 <xs:sequence >
 <xs:element maxOccurs ="unbounded " minOccurs ="0" name ="Slot " type ="SlotType "/>
 <xs:element maxOccurs ="unbounded " minOccurs ="0" name ="SlotOverride " type ="Slot_Override_Type "/>
 <xs:element maxOccurs ="unbounded " minOccurs ="0" name ="DataFlowComponent " type ="DataFlowComponentType "/>
 <xs:element maxOccurs ="unbounded " minOccurs ="0" name ="Edge " type="EdgeType "/>
 <xs:element maxOccurs ="unbounded " minOccurs ="0" name ="Vertex " type ="VertexType "/>
 </xs:sequence >
 </xs:complexType >
 <xs:element name ="seatools_specOntology " type ="seatools_specOntologyType ">

</xs:element >

 <xs:schema elementFormDefault ="qualified " targetNamespace ="http://protege.stanford.edu/ "
xmlns:xs ="http://www.w3.org/2001/XMLSchema ">
 <xs:include schemaLocation ="file:///C:/Program_Files/Protege -2000/base.xsd ">
 </xs:include >
 <xs:complexType name ="RequirementType ">
 <xs:complexContent >
 <extension base ="THING">
 <xs:sequence >
 <xs:element fixed ="STANDARD -CLASS " maxOccurs ="0" minOccurs ="0" name ="METACLASS " type ="xs:string "/>
 <xs:element minOccurs ="0" name ="Name " type ="xs:string "/>
 <xs:element minOccurs ="0" name ="Tag " type ="xs:string "/>
 <xs:element minOccurs ="0" name ="Text " type ="xs:string "/>
 <xs:element maxOccurs ="0" minOccurs ="0" ref ="SEPARATOR "/>
 </xs:sequence >
 </extension >
 </xs:complexContent >
 </xs:complexType >
 <xs:complexType name ="SpecificationType ">
 <xs:complexContent >
 <extension base ="THING">
 <xs:sequence >
 <xs:element fixed ="STANDARD -CLASS " maxOccurs ="0" minOccurs ="0" name ="METACLASS " type ="xs:string "/>
 <xs:element minOccurs ="0" name ="Name " type ="xs:string "/>
 <xs:element maxOccurs ="unbounded " minOccurs ="0" name ="Required_By " type ="xs:string "/>
 <xs:element minOccurs ="0" name ="Tag " type ="xs:string "/>
 <xs:element minOccurs ="0" name ="Text " type ="xs:string "/>
 <xs:element maxOccurs ="0" minOccurs ="0" ref ="SEPARATOR "/>
 </xs:sequence >
 </extension >
 </xs:complexContent >
 </xs:complexType >
 <xs:complexType name ="tool_reqt_specOntologyType ">
 <xs:sequence >
 <xs:element maxOccurs ="unbounded " minOccurs ="0" name ="Slot " type ="SlotType "/>
 <xs:element maxOccurs ="unbounded " minOccurs ="0" name ="SlotOverride " type ="Slot_Override_Type "/>
 <xs:element maxOccurs ="unbounded " minOccurs ="0" name ="Requirement " type ="RequirementType "/>
 <xs:element maxOccurs ="unbounded " minOccurs ="0" name ="Specification " type ="SpecificationType "/>
 </xs:sequence >
 </xs:complexType >
 <xs:element name ="tool_reqt_specOntology " type ="tool_reqt_specOntologyType ">
 </xs:element >

SW Development Tool XML Schema Excerpt

RequisitePro XML Schema Excerpt
 <xs:schema elementFormDefault ="qualified " targetNamespace ="http://protege.stanford.edu/ " xmlns:xs ="http://www.w3.org/2001/XMLSchema ">

 <xs:include schemaLocation ="file:///C:/Program_Files/Protege -2000/base.xsd ">
 </xs:include >
 <xs:complexType name ="RequirementType ">
 <xs:complexContent >
 <extension base ="THING">
 <xs:sequence >
 <xs:element fixed ="STANDARD -CLASS " maxOccurs ="0" minOccurs ="0" name ="METACLASS " type ="xs:string "/>
 <xs:element minOccurs ="0" name ="Name " type ="xs:string "/>
 <xs:element minOccurs ="0" name ="Tag " type ="xs:string "/>
 <xs:element minOccurs ="0" name ="Text" type ="xs:string "/>
 <xs:element maxOccurs ="0" minOccurs ="0" ref ="SEPARATOR "/>
 </xs:sequence >
 </extension >
 </xs:complexContent >
 </xs:complexType >
 <xs:complexType name ="reqpro_reqtOntologyType ">
 <xs:sequence >
 <xs:element maxOccurs ="unbounded " minOccurs ="0" name ="Slot" type ="SlotType "/>
 <xs:element maxOccurs ="unbounded " minOccurs ="0" name ="SlotOverride " type ="Slot_Override_Type "/>
 <xs:element maxOccurs ="unbounded " minOccurs ="0" name ="Requirement " type ="RequirementType "/>
 </xs:sequence >
 </xs:complexType >
 <xs:element name ="reqpro_reqt Ontology " type ="reqpro_reqtOntologyType ">
 </xs:element >
</xs:schema >
</xs:schema >

CCR and FCR
XML Schemas
are Created

Translation Generation Window

Within the OOMI IDE the
FIOM is Constructed

Translation Generation Window

Within the OOMI IDE the
FIOM is Constructed

Conformant with the
UML Structure of the
Federation Ontology

Communication

Response

DiscussionLinksResponses

DiscussionQuery

DiscussionsQueries

CapsMainWindow

CapsAdaFileListCapsResultList

Conformant with the
UML Structure of the
Federation Ontology

Communication

Response

DiscussionLinksResponses

DiscussionQuery

DiscussionsQueries

CapsMainWindow

CapsAdaFileListCapsResultList

Java Translators between
FCR and CCRs Entities
Java Translators between
FCR and CCRs Entities

Finally, construct system
add-ons which will generate
XML data documents
conformant with the schemas

Finally, construct system
add-ons which will generate
XML data documents
conformant with the schemas

Figure 48 FIOM Construction Methodology

First, as discussed Chapter III, the separate tool ontologies and the federation ontology

(of the software development tool domain) are created and represented in Protégé. From

Protégé, these ontologies are automatically exported as XML schemas. The individual

classes in the tool ontologies are exported as Component Class Representations (CCRs)

and the classes in the overarching software development tool ontology are exported as

Federation Class Representations (FCRs).

Next, there are two manual interventions required before the XML

schemas are imported into the OOMI IDE. First, each of these schemas must be

validated against the XML standard used within the OOMI IDE. During this research,

these standards were not the same (the version of Protégé used in the research produced

schemas that were not compliant with the current W3C standard); so, manual

 156

modifications were made to the schemas using an XML editor (such as XMLSPY® from

Altova, Incorporated)[LAWL03]. It should be noted that the need for this manual

workaround may be soon eliminated because Protégé users continually provide enhanced

and corrected plug-ins based on changing data standards. The second intervention is to

modify the OOMI IDE source code. Unfortunately, the OOMI IDE is not yet able to

directly import an FCR Schema. Instead, FCRs are currently hard-coded within the

OOMI IDE source code, which means the source code itself must be modified to add or

change existing FCRs. This is accomplished by importing the validated FCR schema into

the OOMI IDE and treating it as a CCR by “Loading” it and “Compiling” it. Save the

complied classes from that schema in the OOMI IDE directory specified in the IDE’s

createMayTestFIOM() method. The OOMI IDE is then rebuilt and run. After completing

these two manual interventions, the remaining tool ontology XML schemas (the CCRs)

are imported into the OOMI IDE.

The third step in FIOM construction is to follow the methodology

provided in Appendix A of [YOUN02b]. This methodology walks the user through how

to use the OOMI IDE to create Federation Entities (FEs) when no FEs exist and how to

modify FEs when additional CCRs are added. The creation of the FEs is accomplished

based on conforming to the UML inter-relationship diagrams (from Chapter III). The

collected set of all FEs constitute the FIOM. Once the FIOM is created, the OOMI IDE

provides sets of java skeletons (as incomplete java classes), which provide the structure

for the interoperability translators that perform the translation between CCRs and FCRs.

[YOUN02b] proposes using reusable component libraries to populate the holes in the

translation skeletons. These libraries have yet to be assembled; therefore, it is left to the

interoperability engineer to provide the missing code for the translators.

The final step in this process is to construct tool add-ons and embed the

translators within these add-ons. The add-ons provide the interface between the tool and

the middleware used for data transport throughout the HFSE. Currently, there is no

automated method for constructing these add-ons or embedding the translators within

them. Within the add-ons, tool specific information is translated, marshaled, and un-

marshaled based on the interoperability needs of the tools within the framework.

 157

C. EXAMPLE OF CONSTRUCTING THE FIOM
This section provides an example of the FIOM construction process related to the

HFSE. Interested readers are referred to Appendix A of [YOUN02b] for additional

details in the methodology in constructing a FIOM. First, the FCR and CCR schemas are

automatically exported from Protégé. When generating XML schemas, Protégé provides

a “Base” Schema that is common to all Protégé generated schemas. The base schema

defines the Protégé namespace. The complete base schema is illustrated in Figure 49.

 <?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="http://protege.stanford.edu/" xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified">
 <xs:complexType name="THING">
 <xs:sequence/>
 <xs:attribute name="id" type="xs:ID"/>
 </xs:complexType>
 <xs:complexType name="STANDARD-CLASS">
 <xs:sequence/>
 <xs:attribute name="id" type="xs:ID"/>
 </xs:complexType>
 <xs:complexType name="SlotType">
 <xs:sequence>
 <xs:element name="ASSOCIATED-FACET" type="Instance" minOccurs="0"/>
 <xs:element name="DIRECT-SUBSLOTS" type="Instance" minOccurs="0" maxOccurs="-1"/>
 <xs:element name="DIRECT-SUPERSLOTS" type="Instance" minOccurs="0" maxOccurs="-1"/>
 <xs:element name="DIRECT-TYPE" type="Class" minOccurs="0"/>
 <xs:element name="DOCUMENTATION" type="xs:string" minOccurs="0" maxOccurs="-1"/>
 <xs:element name="NAME" type="xs:string" minOccurs="0"/>
 <xs:element name="SLOT-CONSTRAINTS" type="Instance" minOccurs="0" maxOccurs="-1"/>
 <xs:element name="SLOT-DEFAULTS" type="xs:anyType" minOccurs="0" maxOccurs="-1"/>
 <xs:element name="SLOT-INVERSE" type="Instance" minOccurs="0"/>
 <xs:element name="SLOT-MAXIMUM-CARDINALITY" type="xs:integer" minOccurs="0"/>
 <xs:element name="SLOT-MINIMUM-CARDINALITY" type="xs:integer" minOccurs="0"/>
 <xs:element name="SLOT-NUMERIC-MAXIMUM" type="xs:float" minOccurs="0"/>
 <xs:element name="SLOT-NUMERIC-MINIMUM" type="xs:float" minOccurs="0"/>
 <xs:element name="SLOT-VALUE-TYPE" type="xs:anyType" minOccurs="0" maxOccurs="-1"/>
 <xs:element name="SLOT-VALUES" type="xs:anyType" minOccurs="0" maxOccurs="-1"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="Slot" type="SlotType"/>
 <xs:complexType name="Slot_Override_Type">
 <xs:sequence>
 <xs:element name="ClassName" type="xs:string"/>
 <xs:element name="SlotName" type="xs:string"/>
 <xs:element name="FacetName" type="xs:string"/>
 <xs:element name="Value" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="OSValue">
 <xs:sequence>
 <xs:element name="ClassName" type="xs:string"/>
 <xs:element name="SlotName" type="xs:string"/>
 <xs:element/>
 </xs:sequence>
 </xs:complexType>
 <xs:simpleType name="Symbol">
 <xs:restriction base="xs:string"/>
 </xs:simpleType>
 <xs:simpleType name="Instance">
 <xs:restriction base="xs:string"/>
 </xs:simpleType>
 <xs:simpleType name="Class">
 <xs:restriction base="xs:string"/>
 </xs:simpleType>
 <xs:element name="SEPARATOR" type="xs:string"/>
</xs:schema>

Figure 49 Protégé Base XML Schema

 158

The Protégé Base XML Schema defines the metadata for the Protégé knowledge base;

notice the use of classes, slots, and facets.

The next item to be automatically generated from Protégé is the FCR

schema representation of the Software Development Tool Ontology. Recall from

Chapter III (Figure 34) that the entire software development tool ontology produced for

this HFSE research consisted of approximately 40 classes. The XML Schema in Figure

50 is one small excerpt of that ontology and includes only two classes (i.e. the

Requirement class and Specification class).

 <xs:schema elementFormDefault="qualified" targetNamespace="http://protege.stanford.edu/"
xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:include schemaLocation="file:///C:/Program_Files/Protege-2000/base.xsd">
 </xs:include>
 <xs:complexType name="RequirementType">
 <xs:complexContent>
 <extension base="THING">
 <xs:sequence>
 <xs:element fixed="STANDARD-CLASS" maxOccurs="0" minOccurs="0" name="METACLASS" type="xs:string"/>
 <xs:element minOccurs="0" name="Name" type="xs:string"/>
 <xs:element minOccurs="0" name="Tag" type="xs:string"/>
 <xs:element minOccurs="0" name="Text" type="xs:string"/>
 <xs:element maxOccurs="0" minOccurs="0" ref="SEPARATOR"/>
 </xs:sequence>
 </extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:complexType name="SpecificationType">
 <xs:complexContent>
 <extension base="THING">
 <xs:sequence>
 <xs:element fixed="STANDARD-CLASS" maxOccurs="0" minOccurs="0" name="METACLASS" type="xs:string"/>
 <xs:element minOccurs="0" name="Name" type="xs:string"/>
 <xs:element maxOccurs="unbounded" minOccurs="0" name="Required_By" type="xs:string"/>
 <xs:element minOccurs="0" name="Tag" type="xs:string"/>
 <xs:element minOccurs="0" name="Text" type="xs:string"/>
 <xs:element maxOccurs="0" minOccurs="0" ref="SEPARATOR"/>
 </xs:sequence>
 </extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:complexType name="tool_reqt_specOntologyType">
 <xs:sequence>
 <xs:element maxOccurs="unbounded" minOccurs="0" name="Slot" type="SlotType"/>
 <xs:element maxOccurs="unbounded" minOccurs="0" name="SlotOverride" type="Slot_Override_Type"/>
 <xs:element maxOccurs="unbounded" minOccurs="0" name="Requirement" type="RequirementType"/>
 <xs:element maxOccurs="unbounded" minOccurs="0" name="Specification" type="SpecificationType"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="tool_reqt_specOntology" type="tool_reqt_specOntologyType">
 </xs:element>

Figure 50 Software Development Tool XML Schema Excerpt

As discussed above in Section B, this FCR schema must be manually manipulated so that

it can be validated against the current XML standard [LAWL03]. It is imported into the

OOMI IDE, treated as a CCR to generate compiled java classes of the schema, and then

embedded within the OOMI IDE as an FCR. The OOMI IDE itself is then rebuilt and

rerun before importing the tool CCRs.

 159

The tool CCRs are also automatically generated from Protégé and as in the

case of the FCR, are manually updated to become compliant with the current XML

standard. Figure 51 and Figure 52 illustrate small excerpts of the complete XML

schemas from the SEATools ontology and Requisite®Pro ontology, respectively.

 <xs:schema elementFormDefault="qualified" targetNamespace="http://protege.stanford.edu/"
xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:include schemaLocation="file:///C:/Program_Files/Protege-2000/base.xsd">
 </xs:include>
 <xs:complexType name="DataFlowComponentType">
 <xs:complexContent>
 <extension base="THING">
 <xs:sequence>
 <xs:element fixed="STANDARD-CLASS" maxOccurs="0" minOccurs="0" name="METACLASS" type="xs:string"/>
 <xs:element minOccurs="0" name="label" type="xs:string"/>
 <xs:element maxOccurs="0" minOccurs="0" ref="SEPARATOR"/>
 </xs:sequence>
 </extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:complexType name="EdgeType">
 <xs:complexContent>
 <extension base="DataFlowComponentType">
 <xs:sequence>
 <xs:element fixed="STANDARD-CLASS" maxOccurs="0" minOccurs="0" name="METACLASS" type="xs:string"/>
 <xs:element minOccurs="0" name="edgeID" type="xs:integer"/>
 <xs:element maxOccurs="0" minOccurs="0" ref="SEPARATOR"/>
 </xs:sequence>
 </extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:complexType name="VertexType">
 <xs:complexContent>
 <extension base="DataFlowComponentType">
 <xs:sequence>
 <xs:element fixed="STANDARD-CLASS" maxOccurs="0" minOccurs="0" name="METACLASS" type="xs:string"/>
 <xs:element maxOccurs="unbounded" minOccurs="0" name="finishWithinReqmts" type="xs:string"/>
 <xs:element minOccurs="0" name="formalDesc" type="xs:string"/>
 <xs:element minOccurs="0" name="informalDesc" type="xs:string"/>
 <xs:element maxOccurs="unbounded" minOccurs="0" name="mcpReqmts" type="xs:string"/>
 <xs:element maxOccurs="unbounded" minOccurs="0" name="metReqmts" type="xs:string"/>
 <xs:element maxOccurs="unbounded" minOccurs="0" name="mrtReqmts" type="xs:string"/>
 <xs:element maxOccurs="unbounded" minOccurs="0" name="periodReqmts" type="xs:string"/>
 <xs:element maxOccurs="unbounded" minOccurs="0" name="specReqmts" type="xs:string"/>
 <xs:element maxOccurs="unbounded" minOccurs="0" name="triggerReqmts" type="xs:string"/>
 <xs:element minOccurs="0" name="vertexID" type="xs:integer"/>
 <xs:element maxOccurs="0" minOccurs="0" ref="SEPARATOR"/>
 </xs:sequence>
 </extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:complexType name="seatools_specOntologyType">
 <xs:sequence>
 <xs:element maxOccurs="unbounded" minOccurs="0" name="Slot" type="SlotType"/>
 <xs:element maxOccurs="unbounded" minOccurs="0" name="SlotOverride" type="Slot_Override_Type"/>
 <xs:element maxOccurs="unbounded" minOccurs="0" name="DataFlowComponent" type="DataFlowComponentType"/>
 <xs:element maxOccurs="unbounded" minOccurs="0" name="Edge" type="EdgeType"/>
 <xs:element maxOccurs="unbounded" minOccurs="0" name="Vertex" type="VertexType"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="seatools_specOntology" type="seatools_specOntologyType">
</xs:element>

Figure 51 SEATools XML Schema Excerpt

 160

 <xs:schema elementFormDefault="qualified" targetNamespace="http://protege.stanford.edu/" xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:include schemaLocation="file:///C:/Program_Files/Protege-2000/base.xsd">
 </xs:include>
 <xs:complexType name="RequirementType">
 <xs:complexContent>
 <extension base="THING">
 <xs:sequence>
 <xs:element fixed="STANDARD-CLASS" maxOccurs="0" minOccurs="0" name="METACLASS" type="xs:string"/>
 <xs:element minOccurs="0" name="Name" type="xs:string"/>
 <xs:element minOccurs="0" name="Tag" type="xs:string"/>
 <xs:element minOccurs="0" name="Text" type="xs:string"/>
 <xs:element maxOccurs="0" minOccurs="0" ref="SEPARATOR"/>
 </xs:sequence>
 </extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:complexType name="reqpro_reqtOntologyType">
 <xs:sequence>
 <xs:element maxOccurs="unbounded" minOccurs="0" name="Slot" type="SlotType"/>
 <xs:element maxOccurs="unbounded" minOccurs="0" name="SlotOverride" type="Slot_Override_Type"/>
 <xs:element maxOccurs="unbounded" minOccurs="0" name="Requirement" type="RequirementType"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="reqpro_reqtOntology" type="reqpro_reqtOntologyType">
 </xs:element>
</xs:schema>
</xs:schema>

Figure 52 Requisite®Pro XML Schema Excerpt

After importing the CCRs into the OOMI IDE, the FIOM is constructed

by defining Federation Entity Views (FEVs) and Federation Entities (FEs). FEVs

establish the one to one relationship between a particular FCR and CCR pair. FEs are

groupings of FEVs that represent the complete set of representations of the same real-

world entity between all the systems in a federation. Figure 53 illustrates the

“requirement” Federation Entity for the software tool FIOM consistent with the imported

FCR and CCR XML Schemas in Figure 50 and Figure 52, respectively.

 161

Requirement_View1_FCR_Schema:FCR_Schema

name:String
tag:String
text:String

getName()
getTag()
getText()
setName(String)
setTag(String)
setText(String)

<<FCR_Schema>>

Requirement_View1_FCR_Semantics

Requirement_View1_FCR_Syntax

1

1

1

requirement_View1_FCR

ReqProRequirement_CCR_Schema:CCR_Schema

name:String
tag:String
text:String

getName()
getTag()
getText()
setName(String)
setTag(String)
setText(String)

<<CCR_Schema>>

ReqProRequirement_CCR_Semantics

ReqproRequirement_CCR_Syntax

1

1

1

reqProRequirement__CCR

1

1

requirement_View1

requirement

.

Figure 53 Requirement Federation Entity (FE)

Note that the class representation in the CCR and FCR are identical. As [YOUN02b]

points out, this is typical in the FIOM construction process; the initial FCR in an FE is

constructed so that it mimics the first CCR that is introduced in the model. The complete

set of FEs form the FIOM.

 162

D. EXTENDING THE FIOM TO ACCOUNT FOR ADDITIONAL TOOLS
Given an established FIOM, an important question to be answered is how this

FIOM is then modified and extended when additional tools are added to the framework.

Such extensions are accomplished by undertaking the ontology addition/modification

process defined in Chapter III (end of Section B) and then modifying the FIOM in

accordance with [YOUN02b], Appendix A. An important concept during this process is

to establish a balance between the granularity available in the tool description of the

software artifact and the desired granularity of the set of holistic relationships required

from the HFSE. As an example to illustrate the issues involved in such extensions,

consider the possible addition of Rational Rose® and a set of pseudo-code to an already

constructed FIOM in the HFSE.

1. Addition of Rational Rose® Example
Given an already established HFSE FIOM (perhaps consisting of SEATools and

Requisite®Pro objects) adding the UML modeling tool, Rational Rose, requires a number

of steps. First, using the methodology of Chapter III, an ontology is created that defines

the Rose artifacts to be represented within the HFSE. In the case of Rose, the engineer

must determine what level of artifact granularity is available and what level of granularity

is desired within the HFSE. Rose provides a COM extensibility interface that allows the

engineer access to objects within a Rose model. The level of granularity varies between

the entire model itself (a single .mdl file) and the elements within that model (e.g. the

object representations of the use case actors, model views, class diagram classes,

sequence diagram activities, etc.). For the sake of this example, assume that the engineer

wishes to reference the specific elements of a Rose model (as opposed to simply the

model itself). The user accesses these “Model Elements” through the Rose Extensibility

Interface (see Figure 54).

 163

Figure 54 Rational Rose Extensibility Interface (from [ROSE02])

After the user creates an ontology and UML representation of the Rose elements, he must

then establish how this UML representation interacts with the already existing UML

defined relationships of the FIOM. The FIOM UML description is then modified to

account for the additional objects in the federation. Just modifying the UML description

is not of course sufficient; the FIOM itself must be modified. This is accomplished by

exporting the XML schema related to the Rose objects (the Rose CCR), importing that

CCR into the OOMI IDE, building new FEVs to account for the new CCR, and then

modifying the relationships between FEVs to update the FEs [YOUN02b]. At that point,

the OOMI IDE generates new translators that are then re-embedded into all the tool add-

ons throughout the HFSE. Also, the engineer must construct an add-on for Rose so that it

can interact with the other tools in the HFSE.

2. Addition of Pseudo-Code Example
Now consider a second example of wanting to include portions of pseudo-code

into the HFSE. The issue associated with granularity becomes particularly problematic.

Also problematic is how the artifacts are stored and accessed by the HFSE. Assume that

the user has defined several algorithms using pseudo-code along the lines of those shown

in Figure 55 and Figure 56.

 164

 INSERTION-SORT(A)
1 2 []
2 []
3 Insert [] into the sorted sequence [1.. 1].
4 1
5 0 and []
6 [1] []
7

j length A
key A j

A j A j
i j

i A j key
A i A i

←
←

−
← −

> >
+ ←

for to
do

while
do

 1
8 [1]

i i
A i key

← −
+ ←

Figure 55 Insertion-Sort Algorithm Pseudo-Code (from [CORM91])

 MERGE-SORT(A, p, r)

1
2 () / 2
3 (, ,)
4 (, 1,)
5 (, , ,)

p r
q p r

A p q
A q r

A p q r

<

← +

+

if
then

Merge - Sort
Merge - Sort
Merge

Figure 56 Merge-Sort Algorithm Pseudo-Code (from [CORM91])

The issue now becomes how these software development artifacts (pseudo-code

algorithms) are created, stored, and maintained. Assuming a worst case in which the

pieces of code are simply scribbled on separate pieces of paper, the engineer must

artificially create an electronic description of these artifacts that can be exploited by the

HFSE. This artificial description might be as simple as an electronic CSV file that lists

the two major artifacts (see Table 27).

ID Name Description
IS Insertion-Sort Algorithm An algorithm that uses insertion to sort items.

Efficient for a small number of elements.
MS Merge-Sort Algorithm A recursive algorithm that employs a divide-and-

conquer approach to sorting.

Table 27 Large Granularity Pseudo-Code CSV File

Again, granularity becomes an issue. The engineer might need to specify the artifacts to

a finer level of granularity in order to link them appropriately to other objects in the

 165

HFSE (e.g. to specific lines of code). In such a case, the CSV file might look like the one

in Table 28.

ID Name Description
IS Insertion-Sort Algorithm An algorithm that uses insertion to sort items.

Efficient for a small number of elements.
IS1 Insertion-Sort Line 1 2 []j length A←for to

IS2 Insertion-Sort Line 2 []key A j←do

IS3 Insertion-Sort Line 3 Insert [] into the sorted sequence [1.. 1].A j A j −

IS4 Insertion-Sort Line 4 1i j← −

IS5 Insertion-Sort Line 5 0 and []i A j key> >while

IS6 Insertion-Sort Line 6 [1] []A i A i+ ←do

IS7 Insertion-Sort Line 7 1i i← −
IS8 Insertion-Sort Line 8 [1]A i key+ ←

MS Merge-Sort Algorithm A recursive algorithm that employs a divide-and-
conquer approach to sorting.

MS1 Merge-Sort Line 1 p r<if

MS2 Merge-Sort Line 2 () / 2q p r← + then

MS3 Merge-Sort Line 3 (, ,)A p qMerge - Sort

MS4 Merge-Sort Line 4 (, 1,)A q r+Merge - Sort

MS5 Merge-Sort Line 5 (, , ,)A p q rMerge

Table 28 Fine Granularity Pseudo-Code CSV File (after [CORM91])

The amount of effort that the engineer should spend to artificially create an electronic

description of the artifacts must be carefully weighed against the potential payoff in long-

term accessibility, visibility, and maintainability provided by the electronic description as

well as the potential pay-off associated with having these artifacts linked through QFD

dependencies to the other artifacts in the HFSE.

Once an electronic representation of the artifacts is established, the engineer is

then free to add them to the HFSE just as he would any other artifacts: create an ontology

description of the artifacts, export that description as an XML schema, update the FIOM,

generate new translators, create an add-on that interfaces the pseudo-code CSV file, and

re-embed the translators in the application add-ons. One issue remains, however, and that

 166

is that the engineer must manually (and continually during the entire lifecycle) maintain

proper configuration management between the electronic description of the artifacts and

the real artifacts scribbled on pieces of paper.

E. CREATING THE TOOL ADD-ONS
The final step in applying the OOMI methodology to the HFSE is to construct

tool add-ons and embed the translators within these add-ons. These add-ons provide the

interface between the tool and the middleware used for data transport throughout the

HFSE. Neither this dissertation research, nor the research presented in [YOUN02b]

validated this major step of the OOMI approach. While it does not appear to be

particularly problematic, this step does represent additional overhead when adopting the

OOMI approach within the HFSE. Considerations in constructing the add-ons include

the following:

• The add-on must interface with both the tool API and the HFSE
middleware mechanisms.

• The translators within the add-ons should be easy to replace and update.
• The tool add-on should be constructed in such a way as to anticipate future

upgrades of the tool while minimizing potential changes to the add-on.

Validating this step of the research is considered an area of future research (see Chapter

IX).

F. LIMITATIONS OF THE OOMI APPROACH TO PROVDING
INTEROPERABITIY WITHIN THE HFSE
A significant advantage of the OOMI approach is that it reduces the number of

potential translations needed between heterogeneous systems (2n versus n2). This is an

important consideration given the number of potential tools that a developer might use

over the lifetime of a software development effort. Another advantage is the incremental

nature of the approach; the developer can select how many (or how few) different tools to

include in the HFSE and how many (or how few) artifacts to include. However, despite

these advantages there are a number of limitations in the approach that should be

considered.

 167

1. The Intra-lingual Concept
In previous natural language translation research, intra-lingual approaches have

been attempted without success. The reasons for these failures inevitably stemmed from

the size and the complexity of the task. It was just too difficult to establish an intra-

lingua that could account for all of the semantic differences posed by different culturally

influenced languages. Having pointed out this limitation, there is some reason to believe

that establishing an intra-lingua for heterogeneous computer systems might be more

successful. These reasons include the more manageable size and complexity of the

problem and the existence of tighter bounds on the semantic differences between

computer systems than those that exist in culturally defined natural languages. However,

it remains to be validated whether the approach is manageable when the number of

heterogeneous systems and artifacts continues to increase.

2. Scalability
As previously discussed, adding additional tools to an ontology or a FIOM is not

a simple additive process. There is a lot of work that must take place to reorganize the

internal structure of the ontology and FIOM to accommodate new tools. The question

then becomes one of scalability. At what point in the process does the internal

reorganization required to accommodate a new tool make the approach to become

infeasible? This issue is considered an issue for future research (see Chapter IX).

3. Ontologies and FIOMs are Difficult to Build
Ontologies are hard to build, especially in an automated way. Construction takes

a great deal of time and effort because the same issues of understandability, identified in

this dissertation as motivation for the HFSE, exist in the construction of ontologies and

later in construction of the FIOM. It is difficult and time consuming to understand and

comprehend the previous efforts of an ontology/FIOM engineer before making

significant progress in extending an ontology or FIOM. While Young’s OOMI model is

an attempt to represent ontologies in an incremental and computationally useful way,

addition work is needed to make the overall approach more pragmatic.

 168

G. SUMMARY
This chapter illustrates through the use of examples how a HFSE FIOM is constructed

and used given ontology descriptions of HFSE artifacts. The chapter also provides an

overview of the tasks required when adding additional tools to an HFSE FIOM and

discusses the limitations of the approach.

 169

VI. THE HOLISTIC FRAMEWORK FOR SOFTWARE
ENGINEERING (HFSE)

A. THE HFSE
The HFSE is both a methodology and a model (with tool support) for integrating

two or more software development tools so that they provide a holistic view of software

development artifacts created and used during a software development lifecycle. This

chapter explains how to apply the HFSE to integrate a set of software development tools,

how to extend the HFSE to include additional tools, and how to use the HFSE to obtain

user defined holistic views of the software development process.

B. APPLYING THE HFSE TO ESTABLISH INTEROPERABILITY OF
SOFTWARE ENGINEERING PROCESS MODELS

1. Identifying The Project Schema
The first step in applying the HFSE is to identify the project schema of the

particular software development effort. As defined in Chapter IV, a project schema is an

abstract view of the software development process. Annotated as a directed hypergraph,

the nodes of the project schema represent different types of software development

artifacts (components) while the hyperedges of the schema represent development

activities (steps). Each of the nodes and edges is later decomposed into the instantiated

atomic components and atomic steps of the development effort. The engineer creates the

project schema by identifying all of the different types of software development artifacts

created in their particular development process. Next the engineer identifies the activities

that are used to produce these artifacts. Finally, the engineer connects these artifacts and

activities into a process flow diagram that mirrors the software development process

actually being used.

2. Establishing the Tool Ontology
Once the engineer has created the project schema, the next step is to apply the

techniques described in Chapter III to create a foundational ontology that can be used to

 170

unify the software development tools that produce the artifacts portrayed in the project

schema.

3. Constructing the FIOM
The third step is to apply the techniques described in Chapter V to use the

federation ontology to construct a FIOM of the software development domain. The

individual tool ontologies provide the separate component representations used to

construct the FIOM. The data from these tools (data representing the software

development artifacts) is the data for which translators are established.

4. Establishing Communication Mechanisms
The fourth step in establishing the HFSE is to embed the translators created in the

FIOM construction process into a communications mechanism so that data exchange and

joint task execution is achieved. Middleware (such as CORBA) is one such candidate

communications mechanism and potentially provides dynamic flexibility within the

HFSE. However, the communications mechanism need not be as complex as a dynamic

middleware implementation. For instance, the mechanism used in this dissertation to

demonstrate theoretical feasibility of the HFSE was to use a simple static file import

mechanism. The complexity of the communications mechanism should be selected on the

basis of the complexity of the software development being modeled. A development

effort involving numerous concurrent activities, customers, developers, architects, and

programmers may require a more complex communications mechanism than one

implementing a light, agile software development process.

5. Identifying Dependencies and Artifact Correlations
The final step in establishing the HFSE using the techniques described in Chapter

IV is to create QFD dependencies, artifact (component) correlations, and to deploy the

dependencies throughout the software development effort.

B. EXTENSIONS

1. Extending the FIOM with Additional Software Development Tools
Once a FIOM has been created that integrates a selected set of software

development tools, the FIOM can be extended to incorporate new tools and remove

obsolete tools. The techniques for adding tool representations are discussed in Chapter V

 171

and in greater detail in [YOUN02b]. The basic concept is that the new Component Class

Representations (CCRs) of the new tool are integrated into the existing Object Model of

the tool Federation. The Federation Entities (FEs) are modified to accommodate the

additional representations. Additional translators are constructed as needed.

2. Extending the HFSE
Extending the HFSE consists of two main steps: modifying the project schema

and then integrating the updated FIOM into the framework. The HFSE project schema is

simply redrawn (or modified) to accommodate the additional artifacts or the removal of

artifacts. Next the undated FIOM is used to register the

3. Adding Dependencies
Adding additional dependencies to the HFSE is more straightforward than adding

additional tools to the FIOM. New dependencies are simply created at any point of the

development effort. Initial values for the dependency are established and the dependency

values are deployed both upstream and downstream in the development effort.

C. FOCUSED DEVELOPMENT USING "SLICES"

1. Dependency Threshold
The HFSE allows the engineer to isolate particular subsets of software

development effort as a smaller subgraph of the overall hypergraph that represents the

entire development effort. Once such “slice” is induced by the Dependency Threshold

View. For a particular dependency, the Dependency Threshold View is useful if the

engineer wants to identify which components are associated with the greatest (or least)

dependency values, for example the greatest risk, the least difficulty, etc. In each of these

cases, the engineer would have defined that particular dependency (risk and difficulty)

and assigned values to the dependency and deployed the dependency throughout the

development effort. The Dependency Threshold View then provides a means of isolating

important information from the remaining noisy data in the development effort.

2. Component Tracing
The second way in which the HFSE allows the engineer to isolate interesting

subgraphs of the development hypergraph is through the Component Trace View. The

Component Trace View is useful because it allows an engineer to identify all connected

 172

components of a particular component of interest. For example, if the engineer wanted to

modify a particular program module, he could use the Component Trace View to identify

all connected components that influenced (or are influenced by) that particular module.

Furthermore, because the correlations between components in QFD matrices all have

particular values, the engineer can specify the degree of relationship he is interested in

isolating.

3. Potential Application of Risk-Induced Slices
One possible future research thread is to examine the benefits of using the HFSE

to extract a risk-induced slice of the development effort and to then focus developmental

resources on that slice. This potentially would improve the Software Development Life

Cycle in the following three ways:

a. Greatest Risk Slices

First, the HFSE aims to improve prototyping efforts by allowing the

designer to focus only on those aspects of the design that represent the greatest

uncertainty and/or greatest risk to project success. It should be possible to extract a

"slice" of the entire dependency graph so that effort is not wasted on aspects which are

already well defined, understood, and/or successfully implemented in previous versions.

This will make the development effort more efficient and economic. Also, it may be

possible to make this become a prescription rule rather than a filtering constraint, so that

only the parts of the graph in (or near) the designed slice are constricted in the system to

begin with. Building the entire graph and then “slicing” it may waste a lot of human

effort.

b. Change Knock-on Effects
Secondly, it will be possible to identify and isolate the impact of

individual changes on other dependent parts of the software development effort. Because

all the software artifacts are linked together by a relational hypergraph, after making a

single change to a single artifact it will be possible to have immediate visibility of all

other artifacts that require modification due to that change. It will also be possible to

have immediate visibility of the customer's view of the change since their priorities have

been "deployed" (by SQFD) throughout the design. A possible implication of this is to

 173

support cost-benefit analysis to determine if the proposed modification be with the effort

-- or whether the effort can tolerate “the implied cost” of the modification.

c. Safety Certification

Finally, we can leverage the extended Evolution Model by identifying the

total effect of individual changes to safety critical portions of the software. Producing

reliable software is an expensive and time-consuming endeavor. Much of the expense

and time is related to identifying all "knock-on" effects when modifying critical parts of

the software and then re-certifying the software after accessing these knock-ons. The

extended Software Evolution model will make it possible to identify all of these "knock-

on" effects quicker and more meticulously by relying on automated methods.

D. CHAPTER SUMMARY

This chapter provided a high level summary of the Holistic Framework for

Software Engineering. Specifically, it explained how to apply the HFSE to integrate a set

of software development tools, how to extend the HFSE to include additional tools, and

how to use the HFSE to obtain user defined holistic views of the software development

process

 174

THIS PAGE INTENTIONALLY LEFT BLANK

 175

VII. EXTENSIONS TO THE COMPUTER AIDED SOFTWARE
EVOLUTION SYSTEM (CASES)

A. CHAPTER OVERVIEW
As presented in Chapter II, the Computer Aided Software Evolution System

(CASES) was developed in support of Harn’s RH model of software evolution

[HARN99c]. Specifically, CASES was developed by [LEHC99] to demonstrate the

feasibility of providing tool support for the RH model. In order to support the work in

this dissertation, the CASES tool was further extended to include needed functionality for

the HFSE and the QFD extensions presented in Chapters IV and VI. As part this

dissertation, a set of UML use cases was developed that clarify how CASES is to be used

and how it interacts with other tools in support of the HFSE (see Appendix A). The effort

to extend CASES with QFD functionality was specifically undertaken by Clomera

[CLOM03] and this chapter presents and summarizes the key contributions of his work in

developing a software evolution support tool to support the construction of the HFSE.

Readers interested in additional detail of the CASES extensions developed in support of

this dissertation are referred to [CLOM03] and Appendix A.

This chapter provides an overview of the extensions made to CASES version 1.1

to create CASES version 2.0. Section B summarizes the results of the effort to provide

graphic functionality for software development project schema creation. Section C

presents the details of the QFD functionality embedded in the tool so that artifact

dependencies can be created, tracked, and deployed. Finally, Section D summarizes the

work that provides user defined views so that dependency data can be isolated, examined

and reasoned about. The major contributions provided by [CLOM03] in support of this

dissertation allow a software engineer to (1) design a custom software evolution model

through the use of the CASES GUI, (2) input, modify, and analyze dependency

characteristics between software artifacts within a QFD framework, and (3) make

decisions based upon views of dependency information.

 176

B. GRAPHICALLY DEFINING A SOFTWARE DEVELOPMENT PROJECT
SCHEMA

1. The Project Schema in CASES version 1.1
In her Masters Thesis [LEHC99], Le developed the automated software evolution

tool known as the Computer-Aided Software Evolution System (CASES version 1.1) in

support of Harn’s Relational Hypergraph (RH) Model of software evolution.

CASESv1.1 was developed using object-oriented tools, Java Development Kit (JDK)

1.1.7, Swing 1.0.3, under the Visual Café version 3.0 environment (see Figure 57).

CASES assists the software engineer in performing software evolution activities and

allows the engineer to better control and manage the software evolution process. The

tool provides five functions related to the activities of software evolution. These are step

refinement, project evaluation, constraint management, personnel management, and step

management. Additionally, CASES provides five functions related to software evolution

components: component management, component traceability, configuration

management, dependency management, and inference rule management.

Figure 57 CASESv1.1 New Project Screenshot

CASESv1.1 allows the user to define steps and components tailored to a specific

single software development methodology: the evolutionary process model (previously

illustrated in Chapter II, Figure 6). CASES manages and controls all of the activities that

change a software system and the relationships among these steps and components.

CASESv1.1 was the first tool to support the practicality of the RH model. However, the

utility of the tool was constrained by the reliance on a text and menu driven functionality

tied to a single specific software development model. In version 1.1 of CASES, the

 177

software engineer inputs information related to their software development process

through a series of text and menu driven dialogs (see Figure 58).

Figure 58 CASESv1.1 Project Schema Creation Dialog

While not only laborious, this approach obfuscates the evolutionary linkages within

lengthy textual strings. One of the objectives in the research conducted by [CLOM03]

was to improve Le’s work by providing an intuitive, graphically based interface so that

the software engineer could easily define project schemas related to their own specific

software development process.

2. The Project Schema in CASES version 2.0
In CASES version 2.0, [CLOM03] improves upon version 1.1 by providing an

interactive GUI by which software engineers can construct and tailor a specific software

development project schema. The schema is no longer necessarily tied to the

evolutionary prototyping model of software development. The engineer is free to create

components and steps that represent the artifacts and activities actually used in the

development effort, artifacts actually created in other software development tools. Figure

59 illustrates the CASESv2.0 project schema drawing pane in which an engineer is

graphically depicting an abstraction of their particular software development process by

 178

identifying unique components (types of software artifacts) and connecting those

components with development steps (types of activities leading to the generation of

components).

Figure 59 CASESv2 Project Schema Creation Process

In this particular case the engineer uses a point-and-click interface to create the project

schema. As the engineer creates new components and steps, the components and steps

are automatically given a unique identifier name. The individual components and steps

are then specialized based on the specific attributes of the development process to

complete the project schema.

As an example, consider a simple software development life-cycle in which the

main development artifacts include the following:

• Customer requirements,
• Questions and answers (based on customer-developer dialog about

the requirements),
• Software specifications,
• Code, and
• Feedback (from the customer based on validation testing of the

code).
The project schema for this particular software process is illustrated in Figure 60.

 179

Figure 60 CASESv2 Completed Project Schema

Note that in this schema, the different types of components (the different types of

software development artifacts) are abstracted as individual vertices in a directed graph

and the steps (the activities in the development effort) are abstracted as directed edges in

the graph. This easy to understand abstraction simplifies the textual based project

schema format used in CASESv1.1. Notice also that this schema bears no resemblance to

the evolutionary prototyping model required in version 1.1, the engineer was able to

create a project schema tailored to and matching their own unique software development

process.

It is notable, that while the use of the evolutionary prototyping model is not

required in CASESv2.0, there is no reason a software engineer could not create that

particular schema if desired. The schema created in Figure 61 illustrates exactly that --

the IBIS evolutionary prototyping model (originally illustrated in Chapter II, Figure 6)

implemented in CASESv2.

 180

Figure 61 IBIS Evolutionary Process Model in CASESv2

Providing a project schema creation GUI is a significant enhancement over

version 1.1. The GUI provides the software engineer an easy to use, intuitive interface

for modeling within CASES the actual artifacts and activities used in particular software

development efforts. Next, consider the CASES enhancements related to QFD that allow

the engineer to decompose these high-level component and step abstractions into atomic

components and steps so that the engineer can deploy particular defined dependencies

throughout the whole of the development effort.

C. EMBEDDING QFD INTO CASES
There are three main enhancements needed to CASESv1.1 in order to embed the

QFD functionality required to support the HFSE. First, CASES needed a means of

capturing user specified dependencies (and attributes of those dependencies). Second,

CASES needed a means of registering the abstract components of the project schema

(e.g. requirements, specifications, code, etc.) with specific decomposed, instantiated

component data (e.g. atomic components such as Requirement number 1.3, variant 2,

version 3). Third, CASES needed to provide the engineer the ability to display and

modify QFD matrices implied by the registered data.

 181

1. QFD Dependencies
As defined in Chapter IV, QFD Dependencies are the set of specialized

relationships that are “deployed” from one set of components to another. Examples of

QFD Dependencies include risk, customer priority, difficulty of implementation, cost of

implementation, requirement stability, safety, security, etc. In CASESv2.0 QFD

Dependencies begin with the use of a Dependency creation dialog (see Figure 62). The

engineer creates dependencies by left “clicking” the “dependency” button on the CASES

toolbar. The engineer inputs the dependency name, description, type, value range,

default value and origin.

Figure 62 CASESv2 Dependency Creation Dialog

The name provides a short name for identifying one dependency from another. The

description provides the engineer the opportunity to record particular details of a

dependency so that others can later understand the context of the dependency. The type

can be selected from “risk”, “safety”, and “parent-child.” In CASESv2.0 the “type” field

does not provide any actual functionality; but is provided as a possible future extension in

which specific, pre-defined dependency type attributes can be associated at run-time with

particular instantiated dependencies. The value range is also provided as a feature for

future extension and currently assumes a real value range of 0 to 9. Future extensions of

value ranges could account for step functions, integer values, or Boolean values. The

default value is used to initialize the dependency values in the QFD matrix upon the first

 182

use of a dependency. The “origin” of the dependency must be set to a component in the

project schema and represents the source from which the dependency value is generated.

For instance, a dependency of “Specification Difficulty” might use the “Specifications”

component as the origin since it is likely that the difficulty value will be generated by

considering the difficulty of implementing each specification. This origin is used as the

basis to perform upstream and downstream calculations (discussed in Chapter IV) based

upon that component.

2. Component Data Import
The next major QFD extension to CASES is the ability to import real artifact data

from external software development tools. In CASESv1.1 the user was provided the

functionality of opening an external software development tool (e.g. Microsoft Word,

CAPS, MS Excel, Netscape, Notepad). Those tools were then used to create separate

individual files for each atomic component. For example in [HARN99c], an individual

text file “/c4idata/1.2/requirements/c4i.gui_2.5.req.text.txt” was created for this variant 1,

version 2, requirement 2.5, C4I GUI requirement:

The dynamic output graphic interface must provide the function of
monitoring the target and missile intersection point.

This individual text file was then associated within CASES as a single reference to the

atomic component: R1.2-2.5. While working within CASES, the engineer either had to

remember what this reference referred to or had to create a separate listing of all the files

and individual data in order to laboriously identify the linkages between components. As

an example, consider Figure 63 and the effort required to obtain an intuitive feel for how

R1.2-2.5 was arrived at during the requirement analysis step. The engineer would

probably have to have a minimum of four separate files open at the same time (related to

the references R1.2-2.5, R1.1-1.6, I1.2-3, VT-R1.2-2.5).

 183

Requirement analysis step: s-R1.2

(R1.2-1 ← s-R1.2-1 (R1.1, I1.2-2, I1.2-3, VT-R1.2-1))

(R1.2-1.1 ← s-R1.2-1.1 (R1.1-1, I1.2-2.1, I1.2-2.2, VT-R1.2-1.1))

(R1.2-1.2 ← s-R1.2-1.2 (R1.1-1, I1.2-2.3, I1.2-3.1, VT-R1.2-1.2))

(R1.2-2 ← s-R1.2-2 (R1.1-1, I1.2, VT-R1.2-2))

(R1.2-2.1 ← s-R1.2-2.1 (R1.1-1.1, I1.2-3, VT-R1.2-2.1))

(R1.2-2.2 ← s-R1.2-2.2 (R1.1-1.2, I1.2-3, VT-R1.2-2.2))

(R1.2-2.3 ← s-R1.2-2.3 (R1.1-1.4, I1.2-3, VT-R1.2-2.3))

(R1.2-2.4 ← s-R1.2-2.4 (R1.1-1.5, I1.2-3, VT-R1.2-2.4))

(R1.2-2.5 ← s-R1.2-2.5 (R1.1-1.6, I1.2-3, VT-R1.2-2.5))

(R1.2-2.6 ← s-R1.2-2.6 (R1.1-1.2, I1.2-3, VT-R1.2-2.6))

(R1.2-2.7 ← s-R1.2-2.7 (R1.1-1.6, VT-R1.2-2.7))

(R1.2-2.8 ← s-R1.2-2.8 (R1.1-1.2, VT-R1.2-2.8))

Figure 63 C4I Systems Requirements Analysis Step (after [HARN99c])

Thus, there are a number of shortcomings with this functionality. First, each file

association had to be individually created and managed, a laborious process. Second,

because actual artifact data was not used in CASES (only references to the data), it was

difficult for the engineer to quickly glean meaningful information from the references.

CASESv2.0 addresses these shortcomings by providing an “import” function in which

the user is able to import atomic component data directly into the tool. This situation is

improved in CASESv2.0 where the engineer gains an intuitive feel for the relationships

between atomic components through use of the project schema and individual QFD

matrices.

 In CASESv2.0, the software engineer registers the high level abstract

component types in the project schema with specific atomic component data contained in

.csv (comma separated value) files produced from individual tools. CSV files are static

flat files easily created from ASCII text, spreadsheets, or database files. The engineer

“imports” this atomic component data directly into CASES by “right-clicking” on a

 184

component, identifying the particular variant and version number and then navigating to

the .csv file (see Figure 64).

Figure 64 CASESv2 Data Integration via Import CSV File (Requirements variant 2

version 3)

In Figure 64 the engineer imports the .csv file for the Requirements of variant 2 version

3. This data can then be seen and used in establishing QFD relationships within the

CASESv2.0 QFD Matrices.

3. QFD Matrices
The third major extension needed to embed QFD into CASES is to provide a QFD

matrix capability so that the engineer can establish correlations between components,

enter or modify dependency values, and then perform upstream and downstream

deployment calculations. The engineer views and modifies a particular QFD matrix by

“right-clicking” on a particular step (edge) and selecting “QFD” followed by the

particular dependency of interest. The user is then presented with a QFD matrix with the

input component on the left and the output component across the top (see Figure 65).

The engineer is then free to enter correlation values (typically 0, 1, 3, or 9 (see Chapter

IV)) and to enter or modify dependency values. Dependency values may only be edited

at the “origin” component (specified during dependency creation).

 185

Figure 65 QFD Matrix: Requirements x Specifications (Dependency: Reqt Risk)

Finally, after all the correlation dependency values are entered, the user presses the

“Calc” button the on the QFD dialog or the “Sync” button on the CASES toolbar and the

tool automatically “deploys” the dependency. In the case of the “Calc” button, the

dependency is only deployed to the components of the open QFD matrix. In the case of

the “Sync” button, the dependency is deployed to all connected components in the

software development effort.

In Figure 65 the engineer was presented with a QFD matrix between

“Requirements” and “Specifications” for the QFD dependency “Requirement Risk”.

Note that the imported textual information (the requirement/specification numbers and

names) was automatically displayed and allows the engineer to intuitively understand

what linkages and comparisons are being established. The engineer could have imported

the values for “Requirement Risk” via the .csv file or entered/edited those values

individually. After entering in values of correlation between the requirements and the

specifications, the engineer used the “Calc” button to deploy the Requirement Risk to the

specifications.

D. ENGINEERING VIEWS OF QFD DEPENDENCIES (SLICES OF THE RH
MODEL)
Simply creating QFD matrices and entering information into them does little to

assist software engineers in building better software or in improving their software

processes. In order to offset the overhead associated with gathering and entering this

information, there must be means by which the engineers can quickly isolate and view

 186

interesting information that will help them improve their software product or improve

their software development process. CASESv2.0 implements two such means by

allowing the user to define two different views of QFD information: the Dependency

Threshold View and the Component Trace View.

1. Dependency Threshold View
The Dependency Threshold View allows the engineer to isolate a subset of

important (or unimportant) components from the entirety of the development effort. This

view is useful if the engineer wants to identify which components have the greatest risk,

or are the least difficult, or are the most unstable. In each of these cases, the engineer

would have defined that particular dependency (risk, difficulty, stability), assigned values

to the dependency and deployed the dependency throughout the development effort. The

Dependency Threshold View then provides a means of isolating important information

from the remaining noisy data in the development effort.

To use the Dependency Threshold View the engineer completes all correlation

matrices and uses the synchronization function on the CASES tool bar to deploy all

dependencies throughout the entire development effort. Next, the engineer opens a

particular QFD matrix of interest. From the “View” menu item of the QFD dialog, the

user selects “Dependency Threshold” and is presented with a dialog in which he can

select a threshold of interest based on the mean and standard deviations of the

components displayed. The mean value +/- the standard deviation of the dependency

values are used as opposed to specifying a particular threshold value because of the

dependency “thinning” and “concentration” effects discussed in Chapter IV.

To illustrate the Dependency Threshold View in CASESv2.0, recall the example

presented in Chapter IV where three requirements were deployed to four specifications

(see Figure 66).

 187

R1
(5)

R2
(1)

R3
(3)

S1
(.53)

S2
(1.06)

S3
(4.76)

S4
(2.65)

Develop
Specs

Figure 66 User-Defined Example from Chapter IV

The CASESv2.0 QFD correlation matrix for this example is presented in Figure 67. This

matrix corresponds exactly with the data presented in Chapter IV, Table 12.

Figure 67 QFD Matrix: R x S (Dependency: Risk)

From this QFD matrix, the engineer selects the “View” menu item and the

“Dependency Threshold” option. As in the example presented in Chapter IV, if the user

desires to view all components greater than the mean, he enters that into the dialog and

the tool automatically trims the QFD matrix to show only those components meeting that

criteria. The user can specify additional thresholds and the tool will continue to provide

the appropriately trimmed matrices. Figure 68 illustrates two such matrices consistent

with the example in Chapter IV in which the user desired to view all components with

dependency values greater than the mean (upper left matrix) and a separate matrix of all

components with dependency values greater than one standard deviation above the mean

 188

(lower right matrix). Note that the resulting components match exactly those derived

analytically as in the example in Chapter IV.

Figure 68 User-Defined Views with Threshold = µ and Threshold = 1µ σ+

It is worth noting that these trimmed matrices equate to induced subgraphs of the

underlying hypergraph representation of the entire development effort. These subgraphs

have been induced by applying user defined threshold criteria against the deployed QFD

dependency values.

It is clear that by using such views the engineer could quickly identify specific

subsets of development components that are of interest. For example, the engineer could

quickly identify all the components that have the greatest risk, or identify the components

that are most related to safety requirements provided by the users. Conversely, the

engineer could quickly identify which components have little risk or no safety

implications. Such specialized informational views provide important decision support

information allowing software engineers to make better decisions as to where to allocate

limited development resources. The Dependency Threshold View could be of benefit in

numerous development situations and is only constrained by the type of dependencies

created by the engineer and the engineer’s ability to accurately determine dependency

values and component correlations.

2. Component Trace View
The Component Trace View is useful to the engineer so that he can identify all

connected components of a particular component of interest. For example, if the

engineer were having difficulty in implementing a particular architectural component, he

 189

could use the Component Trace View to identify all connected components that

influenced (or are influenced by) that particular component. Furthermore, because the

correlations between components in QFD matrices all have particular values, the engineer

can specify the degree of relationship he is interested in isolating.

To use the Component Trace View the engineer completes all correlation matrices

and uses the synchronization function of CASES tool bar to deploy all dependencies

throughout the entire development effort. Next, the engineer opens the QFD matrix just

upstream of the component of interest (i.e. so that the component of interest is listed

across the top of the QFD matrix). From the “View” menu item of the QFD dialog, the

user selects “Component Trace” and is presented with a dialog in which he can select the

particular component of interest and the threshold of correlation. For example if he

selects a threshold of 2, CASES will display all connected components that have

correlation values of 2 or greater.

To illustrate the Component Trace View in CASESv2.0, recall the example

presented in Chapter IV with requirements, specifications, architectural components, and

software modules connected by three steps (see Figure 69).

R1

R2

R3

S1

S2

S3

S4

Develop
Specs

3

3

1

9

1
A2

A3

A4

M1

M2

M3

M4

Define
SW Modules

3

3

1

9

1

A1

A5

Define
Architectural
Components

3

9

11

3

3
9

3
9

9

Figure 69 Component Trace Example from Chapter IV

The CASESv2.0 QFD correlation matrices for this example are presented in

Figure 70. These matrices correspond exactly with the data presented in the component

trace example from Chapter IV and in data in Figure 69.

 190

Figure 70 QFD Matrices for Component Trace Example

Now suppose the user wants to perform a component trace from component A3

(one of the architectural components). The engineer would select the middle matrix from

those in Figure 70 (the matrix in which component “A3” is listed across the top). From

this QFD matrix the user would select the “View” menu item and the “Component Trace”

option. In the resulting dialog, the user would specify which component they desire to

trace from and at what threshold value. CASESv2.0 then presents the user with a series

of “trimmed” QFD matrices corresponding to each major step in the development effort

in which the resulting trace exists. Figure 71 and Figure 72 illustrate the resulting

trimmed QFD matrices related to component traces from component A3 with threshold

values of 2 and 8 respectively.

Figure 71 QFD Trace from A3 (Upstream & Downstream) Threshold 2

 191

Figure 72 QFD Trace from A3 (Upstream) Threshold 8

As in the case of the Dependency Threshold Views, it is important to note that

these trimmed matrices equate to induced sub-graphs of the underlying hypergraph

representation of the entire development effort. These figures equate exactly to the sub-

graphs derived analytically in the example in Chapter IV (recall Figure 45 and Figure

46). These sub-graphs have been induced by applying user defined threshold criteria

against the QFD correlation values based on linkages established in the project schema.

Once again it is clear that by using such views the engineer could quickly identify

specific subsets of development components that are of interest. For example, if the

engineer where having difficulty implementing an important software module, the

engineer could quickly view a trace of all previous components (architectural modules,

software specifications, customer requirements) that led to the need for that software

component. The engineer could then reason about ways in which the architecture could

be modified or the requirement renegotiated in order to find a workable and agreeable

solution to the implementation problem. Alternatively, suppose a change was being

proposed to a safety critical requirement, the engineer could use the Component Trace

View to identify the potential knock-on effect of the proposed change to quickly seeing

all the effected components which would be impacted by the change in the single

requirement component. As was the case with the Dependency Threshold View, the

Component Trace View is a specialized informational view that provides important

decision support information allowing software engineers to make better decisions as to

where to allocate limited development resources.

 192

E. CHAPTER SUMMARY
This chapter presented the results of the research effort devoted to providing tool

support for the HFSE. It provides an overview of the extensions made to CASES version

1.1 to create CASES version 2.0 by [CLOM03]. The major contributions provided by

this improved version of CASES allow a software engineer to: design a custom software

evolution model through the use of the CASES GUI; input, modify, and analyze

dependency characteristics between software artifacts within a QFD framework; and

make decisions based upon views of dependency information.

Together, these extensions provide the necessary tool support that allow the

establishment of the HFSE and allow the HFSE to be applied in actual software

development scenarios.

 193

VIII. VALIDATION

A. APPROACH TO VALIDATION
Recall that the dissertation hypothesis (presented in Chapter I) called for

determining the theoretical feasibility of using the HFSE to improve the interoperability

of software development tools and models. The overall approach to providing evidence

confirming this hypothesis was to apply the HFSE to two software development tools and

then use those tools in two software development scenarios. However, before discussing

the experiment, the results, and implications of the results, the research hypothesis itself

begs the following questions that must be addressed:

• What is meant by “theoretical feasibility”?
• What is meant by “interoperability”?
• What is meant by “improvement” (of interoperability)?

This section of the chapter will define these ambiguous terms, will present the

experimental approach, and will discuss the employed risk mitigation and experimental

scoping measures.

1. Definitions

a. Theoretical Feasibility
Generally, there are three categories of feasibility to consider when

conducting scientific investigation: theoretical, technical, and organizational. In

theoretical feasibility the underlying concern is demonstrating that something could be

accomplished (the experimental variable operating on the observation group producing an

effect on the observation group) if adequate resources existed and were then applied to

the effort. Theoretical feasibility can demonstrated through mathematical proof or by

constructing a proof of concept technical prototype or simulation. In technical

feasibility, the underlying concern is demonstrating that all needed resources exist and

are available for completely accomplishing the investigative task. Technical feasibility is

demonstrated by completely implementing the process under investigation using

established technology and then demonstrating that it works in real world situations. In

organizational feasibility, the underlying concern is demonstrating that while something

 194

might be possible and the technology exists to support it, that there are organizational

reasons why it should be done.

In the case of this dissertation, only evidence of theoretical feasibility is

established. There are two main reasons for this. First, the effort needed to demonstrate

technical feasibility of the HFSE by actually integrating all existing software

development tools via a single ideal dynamic middleware solution is a massive

undertaking requiring many hundreds (if not thousands) of man-years of effort. Second,

the ideal middleware mechanism used to implement the HFSE is not yet identified (and is

considered as an area for future research). In this dissertation, the manual exchange of

static flat data files is used to demonstrate the theoretical feasibility of the framework and

provides evidence that one such technical solution is possible, but by no means should

this simplistic middleware solution be viewed as the ideal technical implementation. In a

technical feasibility study, several dynamic middleware solutions should be compared in

order to determine the most efficient one for implementation within the HFSE for use in

all real world settings. Finally, organizational feasibility is not considered at all in this

dissertation. While an organization’s rationale for potentially employing the HFSE is

anecdotally discussed, no experimental evidence is provided that would demonstrate

conclusively that real organizations have a desire (or an unaccounted for economic

impetus) to implement the framework.

b. Interoperability
There are many definitions of interoperability. For instance, NATO

definitions of interoperability focus on data exchange and define categories (levels) of

interoperability based on the type of data exchange possible between two systems

[STAN00]. Level 1 interoperability consists of separate operators at two different types

of systems manually entering in similar data into their systems; level 2 interoperability

consists of the exchange of media (floppy disc, CDROM, etc.) which can be read by two

different systems; level 3 is the electronic exchange of character based message sets

which can be interpreted by different types of systems; etc. In all cases, the NATO

definition of interoperability focuses on the means, ease, speed, and capacity of data

exchange.

 195

[GANG00] provides an alternative view of interoperability based on four

perspectives: physical interoperability, data-type interoperability, specification-level

interoperability, and semantic interoperability. Physical interoperability relies on the

physical exchange of compatible electronic storage media. Data-type Interoperability

focuses on content and structure of the information exchanged. In specification-level

interoperability, applications that share data do not know the finer details of the data

structure, but rather treat information to be shared as a whole; COM and CORBA are

examples. In semantic interoperability, a system is designed to use different abstract

views of shared entities.

The definition of interoperability that will be used in this dissertation is the

same one that [YOUN02b] relied on for his OOMI methodology and is attributed to

[PITO97]:

Pitoura defines interoperability as the capability of systems to exchange
information and to jointly execute tasks. Full interoperability allows
systems to take advantage of functionalities and services that would
otherwise not be available or would have to be implemented.

In this definition, the concept that interoperability is more than just data exchange is key.

The ability of users of the systems to accomplish joint tasks beyond the individual

capabilities of each system is as an important aspect of interoperability as is information

exchange. It will be this “joint task execution” portion of interoperability (using artifact

information from different systems to identify dependency relationships) that will be

highlighted during the dissertation experiment.

c. Interoperability Improvement
In this dissertation “improvement” in interoperability will be considered as

any increase in quantity, type, or speed of information exchange as well as any increase

in quantity, type, or speed of joint task execution. For instance, if after the application of

the HFSE to a set of software development tools, the tools can execute new joint tasks

(tasks they were not able to undertake prior to the application of the HFSE) this will be

considered an “improvement” to interoperability between the tools. Conversely, if two

tools integrated via the HFSE can no longer exchange information or execute some

 196

particular joint task that was possible before application of the HFSE, this will be

considered to be a “decline” or “reduction” in interoperability.

2. Experimental Design

a. Overview
The experimental design of this dissertation involves applying the HFSE

to a small subset of tools and then using that subset of tools in two software scenarios. A

static group comparison will be undertaken to identify if “improvements” to

“interoperability” exist in the integrated tool set when compared to the interoperability

available between the tools in the same development scenario without benefit of

integration by the HFSE. In essence, the experiment relies on a small representative

subset of tools/models to show that the HFSE can be used to unify them and to provide

evidence that the interoperability of the subset of tools is improved. In the discussion of

internal and external experimental validity, theoretical arguments are then provided to

characterize the class of tools and models that could also be unified with additional effort.

b. Static Group Comparison
This dissertation relies on a static group comparison test to provide

confirming evidence of the dissertation hypothesis. Campbell and Stanley [CAMP63]

point out that this comparison is best characterized as a "pre"-experiment because it falls

short of the unbiased application of the scientific method (the sources of invalidity of the

experiment are delineated later in this chapter). This experiment can be characterized as

an application of the experimental variable (X) upon an observation group (O) as shown

below in Experiment 1 (the experimental notation is adopted from [CAMP63] in which

the horizontal line represents the experimental comparison of observation groups).

X O Experiment 1
 O

 In this experiment
 O ⊆ {all software development tools and models}, and
 X ≡ Application of the HFSE to O.

A static group comparison experiment "is a design in which a group which

has experienced X is compared with one that has not, for the purpose of establishing the

 197

effect of X" [CAMP63]. In this specific dissertation experiment, the HFSE is applied to a

selected subset of tools/models (Rational’s Requisite®Pro and SEATools). The

performance of integrated subset of tools/models (after the application of the HFSE) is

then compared to the performance of same tools/models in a "stand alone" mode (i.e.

without the benefit of integration by the HFSE). The two groups are separately applied to

the same software development scenarios. The comparison in this case will be to

determine if there are any improvements in interoperability between the tools (i.e.

improvements to data exchange and/or joint task execution). Specifically, the experiment

will seek to accumulate evidence of additional data exchange and additional joint task

execution enabled by the application of the HFSE to the subset of tools/models. The

experiment will also record counter-evidence that the HFSE reduces (or inhibits) data

exchange and/or joint task execution.

The two software development scenarios consist of a small “toy” example

involving several development iterations and a more complex real world software

development effort focused on just a single portion of a development effort. The toy

example consists of developing the classic “Hello World” application. While in the toy

example the number of requirements, specifications, code modules, etc. are each

relatively few (1 to 5 atomic components each), the scenario is illustrative of how the

HFSE helps to holistically integrate many different types of artifacts with several variants

and versions each. The real world scenario consists of the development of five parallel

software variants of the CARA infusion pump from the same set of software

requirements. This scenario consists of just a few different types of components

(requirements, questions & answers, and specifications) but with numerous atomic

components in each (e.g. over 150 requirements).

3. Sizing the Dissertation Investigation and Risk Management
Because of the potential size of this dissertation research and the complexity of

existing models and tools that needed to be analyzed, the following mitigation measures

were employed:

a. Limited Number of Software Development Tools Analyzed
Only two software development tools were analyzed to any significant

depth. The original dissertation plan of research called for the analysis of five

 198

models/tools [PUET02a, b] in establishing the software development tool ontology.

However, investigating two tool ontologies (see Chapter III) provided sufficient analysis

for proving the theoretical feasibility of the HFSE. The remaining effort was modified

appropriately.

b. Superficial Exploration for Counter-examples
Once the analysis of the models and tools was complete and a

characterization for them was established, an exploration for counter-examples was

undertaken with the aim of improving the model. This consisted of the top-down

approach used in developing the software development tool ontology (see Chapter III).

This exploration was superficial in both breadth and depth, which is why the ontology

was constructed to be extensible, so that additional future additions and modifications can

be easily implemented in future research.

c. Partial Implementation of Example Tools
The primary goal of this research was only to formulate a framework that

could be used to unify any/all software development tools and models, not one that did

unify them all. This research did not seek to implement a complete federation of models

and tools, nor did it seek to implement completely the tools considered (Requisite®Pro

and SEATools). For instance, when incorporating Rational’s Requisite®Pro into the

HFSE, only limited functionality was incorporated and used, not the entire functionality

offered by the tool.

d. No Validation against a real-world system
The HFSE was not validated in a complete real-world software

development effort. Both the “toy” scenario and the “CARA” scenario were

accomplished as incomplete laboratory development efforts. While the software

requirements for the “CARA” scenario are from a real-world software development

scenario, the remainder of the CARA development artifacts (e.g. the software

specifications) stem from a research environment.

e. Early Implementation
While still investigating parts of the HFSE, the extensions to CASESv1.1

(leading to CASESv2.0) were ongoing. Setting up the HFSE sooner rather than later

helped to bring to light new ideas and concepts that were incorporated into the effort.

 199

Handling the most simplistic pieces of software in the HFSE allowed examination of the

representation, communication, and temporal considerations of evolution of the

development effort and identified needed additions and modifications to the extensions

incorporated into CASES.

B. CONDUCT OF THE EXPERIMENT
In the conduct of the dissertation experiment, the HFSE was applied to Rational’s

Requisite®Pro and SEATools. The framework was then used in two software

development scenarios: first, in a “toy” scenario consisting of a illustrative yet small

development effort encompassing several complete development cycles with multiple

versions and variants, and secondly, in a complex real-world example involving only the

interaction between requirements and a single variant of software specifications. Each

example provides confirming evidence of the dissertation hypothesis.

1. “Hello World” Toy Software Scenario
The first software development scenario conducted in the dissertation experiment

is the classic “toy” example of “Hello World” which helps to clarify how the HFSE can

be applied to software development efforts consisting of multiple variants and versions.

In this scenario a customer and developer interact to produce multiple variants and

versions of a software application that displays “Hello World” on a computer screen.

Together, the customer and developer apply a software development process shown in

Figure 73.

 200

Cust
Rqts

Code

SpecsDevelop Specs

Feedback Validate

M
odify

Requirem
ents

Q & A

Developer-

Customer

Dialog

Develop Specs

Pr
og

ra
m

m
in

g

Figure 73 Hello World Development Process

The customer begins by stating his requirements in Requisite®Pro (see Table 29).

The customer identifies the priorities of his requirements using both the requirements

priority attribute inherent in the Requisite®Pro tool as well as creating a new

requirements attribute called “AHP Priority” and then using the Analytic Hierarchy

Process (AHP) [SAAT80] to provide values for that priority. The customer also creates a

second user defined requirements attribute called “Risk.” He assigns to risk, values

associated with the potential (probably of outcome and level of consequence) for

economic loss, should that particular requirement not be implemented as planned (1=low

risk, 5=high risk).

 201

R Tag Requirement text Name ReqPro
Priority

AHP
Priority

Risk

R1 When commanded, the
software must display the
text "Hello World" at the
terminal.

Write Hello
World

High 0.75 4

R2 The text will be pleasing to
the user.

Pretty Font Medium 0.0 2

R2.1 The font will be Arial. Font Low 0.05 1
R2.2 The font size will be 12. Font Size Low 0.05 1
R2.3 The color of the font will be

Green.
Font Color
Green

Medium 0.15 2

Table 29 Customer Requirements Variant 1 Version 1 (R1.1)

At the same time, the customer spins off a second variant of these requirements in

which the font color is “Red” (see Table 30). Using the numbering scheme proposed in

[LEHC99] and [HARN99c], this set of requirements is referred to as Variant 2, Version

2.

R Tag Requirement text Name ReqPro
Priority

AHP
Priority

Risk

R1 When commanded, the
software must display the
text “Hello World” at the
terminal.

Write Hello
World

High 0.75 4

R2 The text will be pleasing to
the user.

Pretty Font Medium 0.0 2

R2.1 The font will be Arial. Font Low 0.05 1
R2.2 The font size will be 12. Font Size Low 0.05 1
R2.3 The color of the font will be

Red.
Font Color
Red

Medium 0.15 2

Table 30 Customer Requirements Variant 2 Version 2 (R2.2)

After reading through the requirements, the developer responds to the customer

with a question related to potential implementation to which the customer responds (see

Table 31).

Q Tag Q&A Name
Q1 Q: Is the use of a visual basic form

good enough? A: yes.
Visual Basic Form

Table 31 Developer-Customer Question & Answer Version 1 & 2 (Q1.1, Q2.2)

 202

The developer proceeds by developing a single SEATools model of the system

(see Figure 74) that models both variants of the customer’s requirements.

Figure 74 SEATools Hello World Prototype Variants 1 & 2, Versions 1 & 2

The developer uses the PSDL file from the SEATools model to make a list of the

key specifications of the design based on the operators and data streams of the model. He

also captures the “Required By” data for requirements traceability purposes. To each of

these specifications, he assigns a level of difficulty (1= low difficulty, 9=high difficulty)

based on his perception as the difficulty of fully implementing the particular specification

into code. Table 32 lists these specifications.

S Tag Specification

type
Name Difficulty Required By

O1 Operator Hello_World_16 0 R1
O1.1 Terminator User_Terminal_19_18 2 R1, R2
O1.2 Operator Hello_World_22_21 3 R1
E1 State Stream Create_HelloWorld 1 R1
E2 Data Stream Text_HelloWorld 1 R2, R2.1, R2.2
E3 State Stream Text_Color 1 R2, R2.3

Table 32 Software Specifications Variants 1 & 2 Versions 1 & 2 (S1.1, S2.2)

The developer then assigns programmers to tackle particular portions of the

application. The code hierarchy is similar for both variants and is shown in Table 33 and

Table 34. Figure 75 provides screen shots of the actual implementation of both variants.

C Tag Code Description Name
C1 HCI Form1
C1.1 Text settings (green) Text1
C1.2 Command button Command1

Table 33 Code Variant 1 Version 1 (C1.1)

 203

C Tag Code Description Name
C1 HCI Form1
C1.1 Text settings (red) Text1
C1.2 Command button Command1

Table 34 Code Variant 2 Version 2 (C2.2)

Figure 75 Hello World Implementation Variants 1 & 2, Versions 1 & 2

The developer provides the applications to a customer representative who

performs validation testing of the variants against the originally stated customer

requirements. The customer representative provides feedback as shown in Table 35.

F Tag Feedback Name
F1 The user should have the option to choose

between Red or Green.
Color Choice

F2 The function of the command button is
exactly what the user wants

Button works well

F3 The text size and font meet the customer’s
needs

Text Size & Font Good

Table 35 Customer Feedback Version 1 & 2 (F1.1, F2.2)

Based on feedback item “F1,” the customer restates his requirements and asks the

developer to generate another version of the application (variant 2, version 3). The

updated customer requirements (with new priority and risk values) are shown in Table

36.

R Tag Requirement text Name ReqPro
Priority

AHP
Priority

Risk

R1 When commanded, the
software must display the
text "Hello World" at the
terminal.

Write Hello
World

High 0.527 4

 204

R2 The text will be pleasing to
the user.

Pretty Font Low 0.0 2

R2.1 The font will be Arial. Font Low 0.094 1
R2.2 The font size will be 12. Font Size Low 0.046 1
R3 The user will have a choice

of font color as either Green
(default) or Red.

Font Color Medium 0.333 4

Table 36 Customer Requirements Variant 2 Version 3 (R2.3)

The developer updates his Q&A list with “Q2” (see Table 37) and modifies his

SEATools model to account for the new functionality (Figure 76).

Q Tag Q&A Name
Q1 Q: Is the use of a visual basic form, good enough?

A: yes.
Visual Basic Form

Q2 Q: Is the use of radio buttons for choice, good
enough? A: yes.

Radio buttons

Table 37 Developer-Customer Question & Answer Version 3 (Q2.3)

Figure 76 SEATools Hello World Prototype Variant 2, Version 3

The updated SEATools model leads to an updated list of software Specifications
(see Table 38) with updated “difficulty” ratings.

S Tag Specification

type
Name Difficulty Required By

O1 Operator Hello_World_16 0 R1
O1.1 Terminator User_Terminal_19_18 2 R1, R2
O1.2 Operator Hello_World_22_21 3 R1
E1 State Stream Create_HelloWorld 1 R1
E2 Data Stream Text_HelloWorld 1 R2, R2.1, R2.2
E3 State Stream Text_Color 1 R3
E4 Data Stream Text_Color_Cmd 3 R3
Table 38 Software Specifications Variant 2 Version 3 (S2.3)

 205

The developer reassigns programmers to the coding effort. The new code

hierarchy is shown in Table 39.

C Tag Code Description Name
C1 HCI Form1
C1.1 Text settings Text1
C1.2 Command button Command1
C1.3 Radio button (default) Option1_Green
C1.4 Radio button Option2_Red

Table 39 Code Variant 2 Version 3 (C2.3)

Figure 77 illustrates the implemented variant/version. Note that in the center

figure, no text color has been selected, yet “green” text color was displayed (i.e. a green

default value was implemented).

Figure 77 Hello World Implementation Variant 2, Versions 3

The customer, satisfied with this final variant/version provides the feedback in
Table 40.

F Tag Feedback Name
F1 Everything works will, ship the

product
Meets all Rqts

Table 40 Customer Feedback Version 3 (F2.3)

The developer turns the application over to the customer. This ends the Hello

World software development scenario.

2. “CARA Infusion Pump” Software Scenario
The second software development scenario conducted in the dissertation

experiment comes from a real world software development problem associated with the

Computer Assisted Resuscitation Algorithm (CARA) [WRAI01a]:

 206

The Computer Assisted Resuscitation Algorithm (CARA) is a closed loop
software system that drives a high output infusion pump (M100) used for
fluid resuscitation of patients suffering from conditions that lead to
hypotension. The system will use blood pressure as the control for a
proportional closed-loop control algorithm. The CARA system will be
ultimately fielded on up to 3 platforms: LSTAT (Life Support for Trauma
and Transport), DataPak and WPSM, collectively known as HOSTS. The
software will have to accommodate various blood pressure inputs (e.g.
arterial line, noninvasive cuff, pulse wave, etc)… The CARA is intended
to support primary intravenous fluid resuscitation therapy to rapidly
restore intravascular volume and blood pressure in patients with clinical
shock, hypotension, and hypoperfusion states as a result of hemorrhagic
blood loss, occult hemorrhage, neurogenic shock and septic shock.
Currently the uses for the CARA system will be for combat casualties.

In this software development scenario, five teams of developers were each given

identical sets of CARA software requirements [WRAI01c] (also Appendix B) and a

historical set of discussions between developers and customers (framed as 133 questions

and answers) [WRAI01b]. These discussions often related directly to particular

requirements in the requirement set and helped to clarify ambiguities in the requirements

for the developers. A sample of these questions and answers is shown in Table 41.

Tag Question Title Response Reference

Reqmt
Action

Q38 2/3/99 – Is the pause
auto-control mode
necessary?

AC Pause
necessary

2/3/99 – No, it can be
eliminated to simplify the
system and reduce the
operating hazards.

33, 35, 36,
37, 38, 40,
48.4.2

Remove 33,
35, 36, 37,
38, 40,
48.4.2

Q39 2/3/99 – Should 5 cuff
measures be taken to
calibrate the PW, or
will fewer suffice?

Less than 5
readings to
Calibrate
Cuff BP

2/3/99 – The number of cuff
measures required for
calibration should be
reduced to 3.

24.1 24.1

Q40 2/3/99 – Will PA or
CVP be used for auto-
control?

PA or CVP
for AC

2/3/99 – No. N/A

Q41 2/3/99 – When an
action button is pressed
does it remain
available, or is it
disabled?

Action
Buttons

2/3/99 – The action button
should be disabled (possibly
removed) once the button
has been pressed.

 49

Table 41 Excerpt of CARA Questions and Answers (after [WRAI01b])

 From these requirements and discussions, each of the five teams then

independently constructed a SEATools model of the CARA software. The teams did not

 207

see their particular development effort through to the completion of full functioning

executable software systems, only to the specifications development stage (as embodied

as a SEATools PSDL file). The software development process model for this scenario is

illustrated in Figure 78.

Cust
Rqts SpecsDevelop Specs

Q & A

Developer-

Customer

Dialog

Develop Specs

Figure 78 CARA Software Development Process

Note that this is an abbreviated software development process that concluded at

the specifications development phase. The customer begins by stating his requirements

in Requisite®Pro (see Appendix B). The customer identifies the priorities of his

requirements using a user defined requirements attribute called “AHP Priority” and then

using the Analytic Hierarchy Process (AHP) [SAAT80] to provide values for that

priority. The customer also creates a second user defined requirements attribute called

“Risk.” He assigns to risk, values associated with the clarity of requirements as measured

by how frequently developers ask questions about that particular requirement.

Requirements with low risk are those in which the developer asks no questions and those

with high risk are those in which the developer asks multiple questions (1=low risk,

5=high risk). The third user-defined requirement’s attribute is “Safety” in which the user

again uses a 1 to 5 scale to indicate the importance of that particular requirement to the

safety criticality of the overall system design.

While all five SEATools models developed by the independent teams are

described in detail and compared in [LUQI02] and [LUQI03], only one such model was

used in the dissertation experiment and is explained in detail in Appendix C. Using the

associated PSDL file of the graphic SEATools software model, a list of software

development specifications was generated for the variant. This variant was numbered as

1.1 in accordance with the numbering scheme presented in [LEHC99] and [HARN99c].

 208

An excerpt from the model 1 specifications is shown below in Table 42 (this portion of

the specification relates to the IO Module described in Appendix C).

S Tag Spec Type Specification Name Required by
O1.2.2 Operator IO_Module
O1.2.2.1 Operator alarm_controller1
O1.2.2.1.1 Operator Alarm_Display_Generator R6.1, R6.2, R7.1.1,

R7.1.2, R8.1.1,
R8.1.2, R15.1, R15.2

O1.2.2.2 Operator alarm_controller2
O1.2.2.3 Operator button_moniter
O1.2.2.4 Operator display_driver
O1.2.2.4.1 Operator Pump_Plugged_in_Display_Driver R2, R2.1, R2.2, R2.3,

R2.4, R2.5, R12.1
O1.2.2.4.2 Operator LSTAT_power_on_Display_driver R1
O1.2.2.4.3 Operator BP_Graph_and_Value_Driver R14.1.3, R14.1.4
O1.2.2.4.4 Operator CARA_Status_Display_Driver R16, R16.1, R16.2
O1.2.2.4.5 Operator Voume_Infused_and_Flow_Rate_Dis

play_Driver
R10.2, R11.1,
R11.1.1

O1.2.2.4.6 Operator Immediate_Feeeback_Display_Driver
Table 42 Excerpt from CARA Model 1, Specifications 1.1

While the specific step by step software development activities for each team

varied somewhat by team, the general process followed by all teams consisted of

analyzing the requirements, clarifying requirements by considering the developer-

customer questions and answers and then in building a SEATools model that satisfied the

set of requirements and was consistent with the questions and answers.

C. RESULTS AND CONFIRMING EVIDENCE OF THE HYPOTHESIS
Applying the HFSE to Rational’s Requisite®Pro and SEATools, each of the

software development scenarios was completed twice: once using tools that had not been

integrated into the HFSE and once using tools that had been integrated with the HFSE.

1. “Hello World” Results

a. Questions Posed

While completing the Hello World scenarios, the following questions were

asked at particular points in the development effort. This set of questions is not

exhaustive and many similar questions could have been posed in order to highlight

 209

additional benefits of the HFSE. The questions and the presence or absence of answers

are illustrative of the improvements of interoperability (additional joint task execution)

provided by the HFSE.

(1) If a change is made to requirement 2.3 (variant 2 version

2), what other artifacts in the remainder of the development effort will likely change?

(2) Which portion of the code poses the highest risk from a

customer’s standpoint?

(3) Which requirements lead to the most difficult

specification?

(4) What are the most difficult portions of the code?

(5) Which artifacts will need to change based on customer

feedback F1(variant 2 version 2)?

(6) Which pieces of code are the most important to the

customer?

(7) Are all requirements adequately covered by specifications?

b. Non-HFSE Results: Hello World
During completion of the non-HFSE scenario, none of the above questions

could be answered quickly or reliably because there was no automated decision support

information. Both the developer and customer could hazard guesses at each of these;

unfortunately, there was no direct supporting analytical information for their answers.

c. HFSE Results: Hello World
During completion of the HFSE scenario, each of the above questions was

answered reliably because there was automated decision support information available to

the customer and developer. Using CASESv2 as the HFSE support tool, a project

schema (Figure 79 below) was established that mirrored the software development

process of development effort (recall Figure 73).

 210

Figure 79 Hello World Project Schema

Table 29 through Table 40 were used as CSV input to the project schema.

Note that the “PSDL Model” and the actual application “Implementation” are not

included as separate artifacts in the project schema since their information is actually

embodied in the “Specifications” and “Code” artifacts, respectively. Dependency

relationships were established for “ReqPro Priority,” “AHP Priority,” “Risk,” and

“Difficulty.” Throughout the development effort, QFD correlations were established as

appropriate between all components. As QFD correlations were completed, dependency

calculations were synchronized, thus “deploying” the dependencies throughout the

development effort. This deployment provided ready decision support information for

answering the questions. Discussion of this automated decision support information

follows.

(1) Question 1 was, “If a change is made to requirement 2.3

(variant 2 version 2), what other artifacts in the remainder of the development effort will

likely change?” The answer was obtained by performing a “Component Trace” with

threshold “1” on Requirement “2.3, variant 2, version 2” (see Figure 80).

 211

Figure 80 Component Trace: R2.2-2.3, t = 1

The answer included the following components: S2.2-E3, C2.2-1.1, F2.2-1, and F2.2-3.

The implication to the developer was that given this information, he could make a more

accurate assessment of costs associated with making the single change to that

requirement. While this specific decision support information only provided the number

and type of components that would likely change, the developer could view particular

QFD matrices with the “Difficulty” dependency of these components to obtain accurate

information about the relative difficulty each of changing each of these components.

(2) Question 2 was, “Which portion of the code poses the

highest risk from a customer’s standpoint?” The answers to this question were obtained

in less than 3 seconds for each variant by simply viewing the QFD Matrix “Risk

Dependency” between Specifications and Code (see Figure 81).

Figure 81 QFD Matrix: S1.1 x C1.1, d = Risk

For Variant 1 and 2, version 1 and 2, the answer was the C1.1 “Text1” implementation

piece of code with a risk value of 4.7. For Variant 2 version 3, the answer was the C1.3

 212

and C1.4 pieces of code (implementation of the two radio buttons) with a risk value of

3.65 (this make sense give that this was the new piece of functionality that was being

added to the existing design). The implication to the developer was he should probably

assign one of his better programmers to these pieces of code since they represented the

highest level of risk to the customer. Incidentally, the same pieces of code (for variant 2

version 3) had the highest level of priority from the user and had the highest level of

difficulty from the developer. Together, these pieces of information allowed the

developer to make an informed choice as to what resources to apply to this particular

section of the code.

(3) Question 3 was, “Which requirements lead to the most

difficult specification?” The answer was obtained by opening the Requirement x

Specification QFD Matrix for the Difficulty Dependency, then performing a “Component

Trace” with threshold “1” on specification “O1.2” (which has the highest difficulty value

of “3”) (see Figure 82).

Figure 82 Component Trace: S1.1-O1.2, t = 1

The answer included the following component R1.1-1 (for variant 1 and 2, version 1 and

2). In the case of variant 2 version 3, there where two specifications each with a level of

difficulty of 3, therefore two separate traces were required which led to two requirements:

R2.3-1 and R2.3-3. The implication to the developer was that should he run into trouble

in implementing this relatively more difficult specification, he would know exactly which

requirements would be affected. Note that this particular question could have simply

been answered by considering the O1.2 column of the correlation matrix and looking

across to the left

 213

(4) Question 4 was, “What are the most difficult portions of the

code?” The answers to this question was obtained by simply opening the QFD Matrix

“Difficulty Dependency” between Specifications and Code and obtaining a “Dependency

Threshold” view with the threshold equal to the mean (see Figure 83).

Figure 83 Dependency Threshold: S1.1 x C1.1, d = Difficulty, t = µ

For Variant 1 and 2, version 1 and 2, the answer were the C1 “Form1” and C1.1 “Text1”

pieces of code with a difficulty value of 3.08 each. For Variant 2 version 3, the answer

was the C1.3 and C1.4 pieces of code (the color radio buttons) with a difficulty value of

3.24. The implication to the developer was he should probably assign one of his better

programmers to these pieces of code and perhaps should subject these pieces of code to

more rigorous testing than other portions of the code. Once again, these QFD

dependency information has allowed the developer to make an informed choice as to

what resources to apply to these particular sections of the code.

(5) Question 5 was, “Which artifacts will need to change based

on customer feedback F1 (variant 2 version 2)?” The answer was obtained by performing

a “Component Trace” with threshold “1” on Feedback “F1, variant 2, version 2”. The

resulting answer presented the developer with a set of components that included almost

the entire underlying hypergraph meaning that almost every component might require

change. The developer then modified his query and changed the threshold to 3 (see

Figure 84).

 214

Figure 84 Component Trace: F2.2-1, t = 3

The answer included the following components C2.2-1.1; S2.2-E1, E2, E3; R2.2-1, 2.1,

2.2, and 2.3. The implication to the developer was that given this information, he could

make a more accurate assessment of costs associated with modifying the development

artifacts in addressing that particular piece of feedback. While this specific decision

support information only provided the number and type of components that would likely

change, the developer could view particular QFD matrices with the “Difficulty”

dependency of these components to obtain accurate information about the relative

difficulty each of changing each of these components.

(6) Question 6 was, “Which pieces of code are the most

important to the customer?” The answers to this question was obtained by opening the

QFD Matrix “AHP Priority Dependency” between Specifications and Code and obtaining

a “Dependency Threshold” view with the threshold equal to the mean plus 0.5 standard

deviations (see Figure 85).

 215

Figure 85 Dependency Threshold: S2.3 x C2.3, d = AHP Priority, t = 0.5µ σ+

For Variant 1 and 2, version 1 and 2, the answer was the C1.1 “Text1” piece of code with

an AHP Priority value of 0.44. For Variant 2 version 3, the answer was the C1.3 and

C1.4 pieces of code (the radio button features) with an AHP Priority value of 0.26. The

implication to the developer was he should probably assign one of his better

programmers to these pieces of code and perhaps should subject these pieces of code to

more rigorous testing than other portions of the code. Once again, this QFD dependency

information has allowed the developer to make an informed choice as to what resources

to apply to these particular sections of the code.

(7) Question 7 was, “Are all requirements adequately covered

by specifications?” The answers to this question was obtained by opening the QFD

Matrix “Priority Dependency” between Requirements and Specifications and looking at

the QFD correlation matrix (see Figure 86) to see if there were sufficient correlations for

each requirement. While CASESv2.0 does not directly support the coverage calculation

(delineated in Chapter IV), the developer could make a quick estimate by reading across

the rows of the QFD matrix and ensuring that each high Priority valued requirement had

relatively more total correlation than low Priority valued requirements.

 216

Figure 86 QFD Matrix: R2.3 x S2.3, d = Priority

For Variant 1 and 2, version 1 and 2, the answer was yes, the requirements were

adequately covered by specifications. For Variant 2 version 3, the answer was also yes,

the requirements were adequately covered by specifications. The implication to the

developer was he did not need to develop any additional specifications to ensure that the

customer’s requirements were adequately addressed.

2. “CARA Infusion Pump” Software Scenario

a. Questions Posed
After completing the CARA development scenario, the following

questions were asked at the end of the development effort. This set of questions is not

exhaustive and many similar questions could have been posed in order to highlight the

benefits of the HFSE. The questions and the presence or absence of answers are

illustrative of the improvements of interoperability (additional joint task execution)

provided by the HFSE.

(1) Which elements of the SEATools models are the most

safety critical?

(2) Which elements of the SEATools models are the most

important to the customer?

(3) Which elements of the SEATools models are the most risky

(based on Requirements Clarity) from a customer perspective?

(4) If requirement R34 were modified, which portions of the

SEATools model would have to be modified?

 217

(5) In Model 1, which questions/answers and requirements are

related to the “Resuscitation Log”?

(6) In Model 1, which questions/answers and requirements are

related to the “Triple Modular Redundancy” feature of the design?

(7) In Model 1, which questions/answers and requirements are

related to the “Processor Watchdog” feature of the design?

b. Non-HFSE Results: CARA
After completion of the non-HFSE scenario, none of the above questions

could be answered quickly or reliably because there was no automated decision support

information. Both the developer and customer could hazard guesses at each of these;

unfortunately, there was no direct supporting analytical information for their answers.

c. HFSE Results: CARA

After completion of the non-HFSE scenario, the Requirements,

Questions/Answers, and SEATools models were integrated via the HFSE and

CASESv2.0. Each of the above questions was then answered quickly and reliably

because there was automated decision support information available to the customer and

developer. Using CASESv2 as the HFSE support tool, a project schema similar to that of

Figure 78 was established. Only model 1 (variant 1.1) of the five development variants

was defined within CASES. The Requirements CSV file (similar to appendix B), the

Q&A CSV file (similar to Table 41), and a SEATools Specifications file for the variant

(similar to Table 42) were imported into the project schema. Dependency relationships

was established for “AHP Priority,” “Safety” and “Risk.” QFD correlations were

established as appropriate between all components. As QFD correlations were

completed, dependency calculations were synchronized, thus “deploying” the

dependencies throughout the development effort. This deployment provided ready

decision support information for answering the questions. Discussion of this automated

decision support information follows.

(1) Question 1 was, “Which elements of the SEATools models

are the most safety critical?” The answer was obtained by opening the QFD Matrix

“Safety Dependency” between Requirements and Specifications and generating a

 218

“Dependency Threshold” view with the threshold equal to the mean plus 1.5 standard

deviations (see Figure 87).

Figure 87 Dependency Threshold: R1.1 x S1.1, d = Safety, t = 1.5µ σ+

The answer included the following SEATools specifications shown in Table 43.

Variant/
Version

Components

1.1 O1.2.1.1.1.3 BP_Priority_Calculator,
O1.2.2.1.1 Alarm_Display_Generator, O1.2.2.3 button_moniter,
O1.2.2.5.1 Display_Alarm, E15 lost_bp_source, E28 display_alarm_data

Table 43 Most Safety Critical Components: R x S, d = Safety, t = 1.5µ σ+

The developer could have increased or decreased the number of components in the

answer by modifying the threshold. The implication of this information to the developer

was that he could latter design more exhaustive testing of these particular components or

perhaps he might choose to group the implementation of these specifications into distinct

modules to which he would apply formal methods. This information allows the

developer to make informed choices about how and where to apply limited development

resources.

(2) Question 2 was, “Which elements of the SEATools models

are the most important to the customer?” The answer was obtained by opening the QFD

Matrix “AHP Priority Dependency” between Requirements and Specifications and

 219

generating a “Dependency Threshold” view with the threshold equal to the mean plus 2.5

standard deviations (see Figure 88)

Figure 88 Dependency Threshold: R1.1 x S1.1, d = AHP Priority, t = 2.5µ σ+

The answer included the following components shown in Table 44.

Variant/
Version

Components

1.1 O1.2.1.1.1.3 BP_Priority_Calculator,
O1.2.2.1.1 Alarm_Display_Generator, O1.2.2.5.1 Display_Alarm

Table 44 Most Important Components: R x S, d = AHP Priority, t = 2.0µ σ+

Once again, the developer could have trimmed or expanded the number of components

found by modifying the threshold of the search. The implication to the developer was he

might want to assign one of his better programmers to these specifications and perhaps

should subject the pieces of code generated from these specifications to additional

validation testing to ensure that they meet or exceed customer’s expectations. Once

again, this QFD dependency information has allowed the developer to make an informed

choice as to what resources to apply to the development effort.

(3) Question 3 was, “Which elements of the SEATools models

are the most risky (based on Requirements Clarity) from a customer perspective?” The

answer was obtained by opening the QFD Matrix “Risk Dependency” between

Requirements and Specifications and generating a “Dependency Threshold” view with

the threshold equal to the mean plus 1.0 standard deviations (see Figure 88)

 220

Figure 89 Dependency Threshold: R1.1 x S1.1, d = Risk, t = 1.0µ σ+

The answer included the components shown in Table 45.

Variant/
Version

Components

1.1 O1.2.1.1.1 BP_calculator, O1.2.1.1.1.1 Aline_Corroborator,
O1.2.1.1.1.3 BP_Priority_Calculator, O1.2.1.4.2 Terminate_autocontrol,
O1.2.2.1.1 Alarm_Display_Generator, O1.2.2.3 button_moniter,
O1.2.2.5.1 Display_Alarm, O1.2.3.1 line_monitor,
O1.2.3.1.2.2 Impedance_Calculator, O1.2.3.1.3.2 Generate_Air_fault,
E4 cuff_bp, E14 real_bp, E15 lost_bp_source, E28 display_alarm_data

Table 45 Most Risky Components: R x S, d = Risk, t = 1.0µ σ+

Once again, the developer could have trimmed or expanded the number of components

found by modifying the threshold of the search. The implication to the developer was

that these specifications were directly traceable to requirements for which many

questions were asked, an indication that the requirements were not as well understood or

clear as other requirements. Again, the developer might want to undertake some form of

mitigation (such as additional testing, or use his better programmers) in support of these

particular specifications.

(4) Question 4 was, “If requirement R34 were modified, which

portions of the SEATools model would have to be modified?” The answer was obtained

 221

by performing a “Component Trace” with threshold “3” on Requirement “34” (see Figure

90).

Figure 90 Component Trace: R1.1-34, t = 3

The answer included the following components shown in Table 46.

Variant/
Version

Components

1.1 Q47 Terminate AC button, O1.2.1.4 Voting_Element, O1.2.1.4.1 Vote,
O1.2.1.4.2 Terminate_autocontrol, O1.2.2.3 button_moniter,
O1.2.2.4 display_driver, E13 operator_commands

Table 46 Component Trace: R1.1-34, t = 1

The developer could have gained visibility over more or fewer components by varying

the degree of the threshold of correlation (“3” was used here). The implication to the

developer was that given this information, he could make a more accurate assessment of

costs associated with making the single change to that requirement.

(5) Question 5 was, “In Model 1, which questions/answers and

requirements are related to the ‘Resuscitation Log’?” The answer was obtained by

performing a “Component Trace” with threshold “1” on Specifications that were related

to the resuscitation log. In the case of model 1, this included three specifications:

“O1.2.3.5 resuscitation_file operator”, “O1.2.3.5.9 Resuscitation_file_Generator

operator,” and “E38 resuscitation_file data stream.” The Trace of the first specification

in shown in Figure 91.

 222

Figure 91 Component Trace: S1.1-O1.2.3.5, t = 1

The answer included the following components shown in Table 47.

Trace Components
O1.2.3.5 Features (FEAT) 5, 10.1, 11.2, 11.2.1, 12, 14, 14.1, 14.1.1, 14.1.2, 15.3,

16.5.4, 17.1, 17.3.3.2, 17.4, 17.5, 17.6.2, 20.3.2, 20.6, 29.2, 44.4, 46,
46.2, 47, 48.3.1.2, 52.1, 55, 56, 62, 66, 69

O1.2.3.5.9 Features (FEAT) 5, 10.1, 11.2, 11.2.1, 12, 15.3, 16.5.4, 17.3.3.2, 17.4,
17.5, 17.6.2, 20.3.2, 20.6, 29.2, 44.4, 46, 46.1, 46.2, 47, 48.3.1.2, 55, 56,
62, 66, 69

E38 Features (FEAT) 5, 10.2, 11.2, 11.2.1, 12, 14, 14.1, 14.1.1, 14.1.2, 15.3,
16.5.4, 17.3.3.2, 17.4, 17.5, 17.6.2, 20.3.2, 20.6, 29.2, 44.4, 46, 46.1,
46.2, 47, 48.3.1.2, 52.1, 55, 56, 62, 66, 69

Table 47 Component Trace: S1.1-O1.2.3.5, O1.2.3.5.9, E38, t = 1

The implication to the developer was that he could use the information to ensure his

specification met all requirements associated with the resuscitation log. Alternatively, if

changes were needed for the resuscitation log specification, he would know which

requirements might need to be reexamined to ensure that the modified resuscitation log

specification remained consistent with already specified requirements.

 223

(6) Question 6 was, “In Model 1, which questions/answers and

requirements are related to the ‘Triple Modular Redundancy’ feature of the design?” The

answer was obtained by performing a “Component Trace” with threshold “1” on the

specifications related to Triple Modular Redundancy. In the case of model 1, two

components implement this feature: “O1.2.1.2 Module2 operator” and “O1.2.1.3

Module3 operator.” The answer was that no requirements or Q&As were related to this

specification. The implication to the developer was that he had generated specifications

for which there were no stated requirements. In this particular case, the developer could

query the customer to determine if such functionality was needed or desired, or he could

delete these specifications from the design, or he could choose to implement the

specifications despite not having a requirements induced rationale for the specifications.

In any case, the developer now has visibility over important design (and safety)

information that was not available to him during the non-HFSE scenario.

(7) Question 7 was, “In Model 1, which questions/answers and

requirements are related to the ‘Processor Watchdog’ feature of the design?” The answer

was obtained by performing a “Component Trace” with threshold “1” on the

specifications related to the processor watchdog. This included three specifications in

Model 1: “O1.2.3.3 processor_watchdog operator,” “E20 ping data stream,” and “E21

acknowledgement data stream.” Much like question (6), the answer was that no

requirements or Q&As were related to this specification. Once again, the implication to

the developer was that he had generated specifications for which there were no stated

requirements and as in the case of questions (6) the developer could query the customer

to determine if such functionality was needed or desired, or he could delete these

specifications from the design, or he could choose to implement the specifications despite

not having a requirements induced rationale for the specifications.

3. Evidence Confirming the Dissertation Hypothesis
As illustrated above, in both development scenarios confirming evidence of the

dissertation hypothesis was established. The HFSE provided improvements in joint task

execution in both scenarios. These improvements are illustrated by the information

jointly generated by the subordinate development tools in response to specific questions

about the development effort. While only seven questions were asked in each

 224

development effort, many more such questions could have been asked in order to provide

quantitatively more evidence; however, qualitatively, this evidence would have been

similar to that generated by the above set of questions.

D. INTERNAL AND EXTERNAL VALIDITY AND EXPERIMENTAL
IMPLICATIONS

1. Internal and External Validity
Campbell and Stanley [CAMP63] lay out the conditions for which scientifically

sound experimentation should occur. In order for an experiment to be scientifically

sound, the experiment must bound sources of internal and external invalidity. Internal

validity deals with the question of whether or not the application of the process (X) was,

in fact, the sole direct contributing cause of the measured result. External validity deals

with the question of whether the result can be generalized to external populations, sets,

etc. outside the experiment. The static group comparison that gathered confirming

evidence in this dissertation controls some (but not all) of these sources of invalidity.

2. Sources of Internal Invalidity

a. History
This source of internal invalidity arises because of specific events

occurring between measurements of the outcome that are in addition to the experimental

variable. This source was not completely controlled during the experiment because once

the tool set (O) was integrated by the HFSE, its state did change during the time period of

the search for evidence of improvements in interoperability of (O). The state changed

because the experiment required seeking interoperability improvements during an active

evolutionary software development effort (albeit a very limited development effort).

While unlikely to be the cause, these state changes cannot be ruled out as the effect of

additional improvements in interoperability. The only way to have controlled this source

of invalidity would have been to repeatedly apply the HFSE to (O) after documenting

each improvement in interoperability (i.e. start from scratch each time). Given that the

main interest was in establishing evidence in a complex evolutionary system, such an

approach was impractical. Instead, the approach adopted to mitigate this source of

 225

invalidity was to determine and document the direct cause of each improvement to

interoperability.

The implications of “History” as a source of invalidity on the experiment

appear to be negligible. At no time were any of the improvements to interoperability

traceable to state changes within the integrated toolset. However, as stated above, this

source of invalidity, while mitigated, could not be entirely ruled out.

b. Maturation
This source of internal invalidity arises because of processes within (O)

that may change as a function of time, independent of any application of the HFSE (X).

This source of invalidity was controlled in the conduct of this experiment but cannot be

ruled out if others attempt to repeat the experiment using a dynamic middleware HFSE

communications mechanism rather than the static middleware mechanism used in this

dissertation (i.e. importing static CSV files). Because software development process

tools may have internal processes that are activated solely by time (e.g. automatic

updating/rectifying of databases) a dynamic middleware solution might create changes

within CASES that could possibly provide interoperability improvements not related to

the application of the HFSE. Such processes would change the state of (O), meaning that

it would not be possible to establish that the direct cause of differences in (O) were a

result of the HFSE (X). Fortunately, this was not the case in this experiment.

Because of the use of a static middleware mechanism between active

software development tools and CASES, it was not possible for “Maturation” to enter the

experiment as a potential source of invalidity. Therefore, there is high confidence that

the improvements in interoperability uncovered during the software development

scenarios were not caused by maturation.

c. Testing
This source of internal invalidity arises when the act of taking an

observation changes the state of the observed item and thus influences future

observations. This source of invalidity was adequately controlled since observing the

evidence of improved interoperability within CASES did not generate any changes to the

state of the relationships stored within CASES. In all each of the scenarios “views” of

 226

existing data were obtained to provide confirming evidence. The underlying data

remained unchanged.

The implication is that there is high confidence that the improvements in

interoperability uncovered during the software development scenarios were not caused by

a “Testing” source of invalidity.

d. Instrumentation

This source of internal invalidity arises because of changes in the

observing instrument or changes in the observers create a bias between measurements.

This source of invalidity could have arisen in this experiment since the experiment was

seeking "improvements in interoperability" -- perhaps influenced by subjective opinion.

The key for controlling this source of invalidity was to carefully define what an

"improvement" means, to define what "interoperability" means, and to uniformly apply

these definitions to the comparison set. As explained at the beginning of this chapter, the

definitions used were as follows:

• Interoperability: data exchange and/or joint task execution
between two or more separate tools/models.

• Improvement: evidence of the existence of interoperability found
in the integrated tool/model set (type, quantity, speed), not found
in the disjoint tool/model set.

These definitions proved sufficient to explain or account for phenomena witnessed during

the experiment; however, because of the numerous variables involved, it is not

guaranteed that these definitions will prove adequate should others attempt to repeat the

results.

The implication is that “Instrumentation” was appropriately mitigated

during the experiment, but cannot be ruled out in future experiments as others attempt to

repeat these results.

e. Statistical Regression
This source of internal invalidity arises when the observation sample

group has been selected from the extremes of the potential observation population. Since

the tools/models selected for integration are more appropriately termed a "convenience"

sample, this source of invalidity was not applicable to this experiment and therefore was

controlled.

 227

The implication is that there is high confidence that the improvements in

interoperability uncovered during the software development scenarios were not caused by

a “Statistical Regression” source of invalidity.

f. Selection Biases
This source of internal invalidity arises because of biases in the selection

of the observation group (O). As mentioned in above, the observation group of tools

integrated by the HFSE is best termed a convenience sample, chosen primarily on the

basis of the availability of the tool/model. Two of the tools/models (SEATools and

CASES) were specifically developed here at the Naval Postgraduate School with a view

that they could be eventually integrated. Because these tools/models were hand-picked

(SEATools as a participant in the observation group and CASES as the support tool of

the HFSE), this selection forms a bias and this source of invalidity was definitely present

in the experiment and therefore was not controlled. To mitigate this somewhat, an

outside, mainstream, commercial software development product (Rationale's Requisite

Pro) was chosen as the requirements engineering tool. Also as a mitigation measure,

each of the examples of joint task execution was considered in light of this particular

source of invalidity. No evidence was found (but that does not mean it does not exist)

that would indicate that this source was in fact the generative cause of the improvement

in interoperability.

 The implication is that the improvements in interoperability uncovered

during the software development scenarios could have been caused by a “Selection Bias”

source of invalidity and not by application of the HFSE to the observation group. The

best way to overcome this limitation would be to undertake as future research, additional

experiments in which other tools (non-NPS developed research software development

tools) are chosen for integration in the HFSE. Just such an experiment is proposed in the

“Future Research” section of Chapter IX.

g. Experimental Mortality

This source of internal invalidity arises when there is a loss of part of the

observation group during the experiment. Application of the HFSE did not result in the

loss of any portion of the tools in the observation group; therefore, this source of

invalidity did not occur and therefore was controlled.

 228

The implication is that there is high confidence that the improvements in

interoperability uncovered during the software development scenarios were not caused by

an “Experimental Mortality” source of invalidity.

h. Selection-Maturation Interaction.
This source of internal invalidity arises in multi-observation group

experiments when interaction between the observation groups is mistaken for the effect

of the experimental variable. Since this experiment did not involve the interaction of the

two observation groups, it cannot occur and therefore was controlled.

The implication is that there is high confidence that the improvements in

interoperability uncovered during the software development scenarios were not caused by

a “Selection-Maturation Interaction” source of invalidity.

3. Sources of External Invalidity

a. Interaction of Testing and X
This source of external invalidity arises when a pretest might change the

observation groups' responsiveness to the experimental variable. In this case, no pretest

was applied to the observation group, therefore there is no opportunity for bias. Thus,

this source of invalidity was controlled.

The implication is that there is high confidence that a “Selection-

Maturation Interaction” source of invalidity was not present in the experiment. Thus,

from this particular perspective (Selection-Maturation Interaction), the improvements in

interoperability uncovered during the software development scenarios could be repeated

in experiments in which other randomly chosen software development tools are

integrated via the HFSE.

b. Interaction of Selection and X
This source of external invalidity arises because of interaction effects

between the selected observation group and the experimental variable. In this case, the

experimental variable (X) is the application of the HFSE, which has as its core the

Hypergraph Evolution Model integrated in the CASES support tool. This model and

SEATools were originally designed to work together. Therefore, their interaction may

have unfairly biased the generality of the result. Thus, this source of external validity

 229

was not controlled and brings into question the practical application of the HFSE on

other, randomly selected tools/models.

The implication is that there is low confidence that there was an absence

of a “Selection-Maturation Interaction” source of invalidity in the experiment. Thus,

from this particular perspective (Interaction of Selection and X), the improvements in

interoperability uncovered during the software development scenarios might not be able

to be repeated in experiments in which other randomly chosen software development

tools are integrated via the HFSE. The best way to determine this is to undertake such an

experiment (see Chapter IX, Future Research).

c. Reactive Arrangements
This source of external invalidity arises because of the reactive results of

experimental arrangements. For instance, if all the tools chosen for the experiment all

had a particular type of API it is not valid to conclude that the result of the experiment is

generally applicable to all tools (for instance, those without APIs). Such a situation did

exist in this experiment because there are many types of APIs (an essential aspect of how

the individual tool ontologies were integrated) but only two such interfaces were used

(the COM API of Requisite®Pro and the static PSDL output file of SEATools). Thus,

this source of invalidity was not controlled. It is worth noting, though, that during

conduct of the experiment there did not seem to be any extraordinary measures needed in

order to integrate the two available APIs.

Therefore, there is low confidence that there was an absence of a

“Reactive Arrangement” source of invalidity in the experiment. Thus, from this

particular perspective (Reactive Arrangements), the improvements in interoperability

uncovered during the software development scenarios might not be able to be repeated in

experiments in which other randomly chosen software development tools are integrated

via the HFSE. The best way to determine this is to undertake many such experiments

testing as many different types of APIs as possible (see Chapter IX, Future Research).

d. Multiple-X Interference
This source of external invalidity arises when there are multiple treatments

of the experimental variable on the same observation group. Since the HFSE was only

 230

applied once to integrate Requisite®Pro and SEATools, there was no opportunity that

this source of invalidity occurred. Thus, it was controlled.

The implication is that there is high confidence that a “Multiple-X

Interference” source of invalidity was not present in the experiment. Thus, from this

particular perspective (Multiple-X Interference), the improvements in interoperability

uncovered during the software development scenarios could be repeated in experiments

in which other randomly chosen software development tools are integrated via the HFSE.

4. Summary of Experimental Validity
Table 48 (below) summarizes the sources of invalidity associated with the

proposed experiment. It is evident, that even with mitigation measures that there are a

number of sources of invalidity. Because of the scope of this research, these sources of

invalidity were not formally mitigated (only discussed). However, in Chapter IX Future

Research, additional experiments that would directly address and account for these

shortcomings are presented.

 231

History ~

Maturation Y
Testing Y
Instrumentation ~
Regression Y
Selection X
Mortality Y So

ur
ce

s o
f I

nt
er

na
l I

nv
al

id
ity

Interaction of Selection
& Maturation Y
Interaction of Testing
and X Y
Interaction of Selection
and X X
Reactive Arrangements X

So
ur

ce
s o

f E
xt

er
na

l
In

va
lid

ity

Multiple-X interference Y

Table 48 Summary of Sources of Invalidity

The summarized results of Table 48 succinctly illustrate the strengths and

weaknesses of the experiment. In terms of internal validity, each source was either

totally controlled or adequately mitigated with the exception of “Selection.” Thus,

confidence is high (but not necessarily conclusive) that application of HFSE and not

some other internal source was in fact the cause of the improvements in interoperability

observed in the experiment. To conclusively demonstrate that the HFSE is the sole

cause of the improvement to interoperability, additional experiments in which randomly

chosen tools are integrated into the HFSE should be undertaken. Such an experiment is

proposed as future research.

The summarized results for external validity are not as strong as those for internal

validity. The potential presence of “Interaction of Selection and X” and “Reactive

Arrangements” sources of external invalidity cast doubt on the generality of the result.

Legend:
Y the source was controlled
X the source was not controlled
~ the source was mitigated

 232

The best way to prove this generality would be to continue to perform multiple similar

experiments using randomly chosen sets of tools. Such experiments are proposed as

“Future Research”.

E. CHAPTER SUMMARY
This chapter presented the validation approach used in the dissertation to obtain

evidence confirming the dissertation hypothesis. The experiments used to obtain the

confirming evidence were presented and explained. The confirming evidence of

improved software development tool interoperability was identified. The sources of

invalidity of the experiment were identified. In terms of internal validity, there is high

confidence that the HFSE does produce improvements in interoperability (thus high

confidence in the validity of the dissertation hypothesis). In terms external validity, more

experimentation is needed in order to determine if there are any limitations on the classes

of tools that might be integrated into the HFSE with additional effort.

 233

IX. CONCLUSIONS

A. REVIEW OF THE DISSERTATION CONTRIBUTIONS

1. Accomplishment of the Research Goal
This dissertation provides confirming evidence of the research hypothesis. In

particular, this dissertation demonstrates the following:

a. Construction of the HFSE is Feasible
As shown in Chapters III, IV, V, and VIII, it is theoretically feasible to

establish a Holistic Framework for Software Engineering that consists of a Software

Evolution model extended with QFD and integrated with a Federation Interoperability

Object Model of subordinate software development models and tools.

b. HFSE Artifacts Can be Described Mathematically

As explained in Chapter IV it is possible to mathematically describe the

HFSE constructs using graph and matrix mathematical notation and to then use linear

algebra to deploy defined dependency values to other artifacts throughout a software

development effort.

c. The HFSE Increases Software Tool Interoperability
Confirming evidence was presented in Chapter VIII that the application of

the HFSE to a sample set of software development tools (Requisite®Pro and SEATools)

increases the interoperability (data exchange and joint task execution) of the selected set.

2. Other Original and Unique Contributions
Beyond achieving the dissertation research goal, this dissertation provides several

other contributions to the field of software engineering.

a. Development of a Software Development Tool Ontology
Construction Methodology

Chapter III provides the blueprint for building a software development

tool ontology. The methodology was adapted from other sources (notably [USCH96]),

but was tailored for identifying and capturing the unique characteristics of software

development tools. This methodology can be used to add additional software

development tools to the already existing tool ontology presented in Chapter III.

 234

b. Construct a Pilot Software Development Tool Ontology

Chapter III presents the beginnings of a software development tool

ontology. Three separate ontologies (and their inter-relationships) are presented: a high-

level software development tools ontology, an ontology that describes the Common

Object Model (COM) interface of Requisite®Pro, and an ontology that describes

important (from an interoperability viewpoint) classes from SEATools.

c. Use the QFD Methodology to Deploy Software Dependencies
other than Quality

 Chapters IV and VIII demonstrate a methodology for deploying definable

software dependencies throughout a software development effort. To date, the main

software dependency deployed using QFD has been a customer's view of quality as

defined through the prioritization of customer requirements. While the theoretical

deployment of other dependencies (such as cost, reliability, new technology, security,

etc.) have been proposed by other authors, there have no proposed methods for deploying

these other dependencies. This dissertation presents such a method.

d. Apply OOMI to the Software Development Tool Domain

Chapter V demonstrates how Young's Object-Oriented Model for

Interoperability for heterogeneous systems was applied to an entirely different domain

(other than C4I systems) by establishing a Federation Interoperability Object Model

(FIOM) between software development process models and tools. This effort provided

an appreciation of the difficulties in applying Young's methodology to a set of legacy

heterogeneous software systems.

e. Use the HFSE to Provide Perspective Views of the Development
Effort

 Chapter VII explains the tool support that provides two user defined

perspective views of particular aspects of a software development effort. The views

presented include the Component Trace view and the Dependency Threshold view.

These views allow the user to glean important decision support information from the

underlying hypergraph of the software development effort. Such decision support can be

later shown to provide software process and product improvements.

 235

2. Potential Long-Term Benefits to the Field of Software Engineering
Establishing the feasibility of the HFSE and the other contributions provided in

this dissertation provide significant long-term benefit to the field of software engineering.

While none of these potential benefits were proven in this dissertation, the dissertation

forms the foundation upon which these benefits can be proven in future research. These

potential benefits can be realized in three main areas.

a. Improved Software Development Processes
The HFSE provides a framework that provides software engineers a

unique holistic view of their software development processes. This holistic view should

lead to identifying unrealized efficiencies and improvements in the process of developing

software. Application of the HFSE should provide coherence to the development effort,

ensuring that the best effort of one part of the effort feeds the best effort of the next and

that each of these best efforts can be directly traced back to the features and aspects of the

design that were of the greatest importance in the eyes of the customer.

b. Improved Software Products
Improvements to the software development process will inevitably lead to

improvements in the product itself. Engineers will be able to more easily identify

portions of the design upon which to focus additional resources and be able to identify

portions of the design which would likely not be affected by a scarcity of resources.

Together such efforts will lead to better software, produced on time and on budget.

c. Recognition of Unrealized Software Development Dependencies
Finally, the HFSE provides researchers a framework upon which to

explore software development dependencies, potentially discovering unrealized

dependencies in the process which in turn will eventually lead back to improved

development methods and products.

B. RESEARCH ISSUES ADDRESSED
There were a number of issues originally identified in the dissertation proposal

that were addressed while completing this research. Initially posed as questions, answers

were discovered while completing the dissertation research.

 236

1. Software QFD

a. Questions
In the application of QFD to Software, what makes software significantly

different than other products? What are the implications of these differences in extending

the Software Evolution model?

b. Answer
In Chapter II (particularly in the review of the work by Zultner [ZULT90,

92, 93]), there were a number of differences identified that must be accounted for when

applying QFD to software. Most of this work centered on the tailoring of the QFD

matrix set. This is exactly what the HFSE does; it uniquely tailors a set of QFD matrices

to the actual software development process that the engineers use.

2. Automation of Requirement Prioritization

a. Question

Is it possible to "objectify" and/or "partially automate" prioritization of

software requirements?

b. Answer
As discussed in Chapter IV there are a number of means of establishing

dependency values (requirement prioritization being one such dependency). One of the

most rigorous methodologies is Saaty’s Analytical Hierarchy Process (AHP) [SAAT80].

While automated tool support is available to support these calculations (for instance

ExpertChoice® software is a tool that supports AHP), inevitably human interaction is

required because it has not yet been possible to formally define the numerous factors that

must be considered in establishing such judgments. Thus, partial automation to support

dependency valuation is feasible, but totally automating the process is beyond current

capability.

3. Automation of Dependency

a. Question
In establishing the strength of dependency between Software artifacts, is it

possible to "objectify" and/or "automate" the process?

 237

b. Answer

While not confirmed in this dissertation, the automation of similar tasks in

support of the dissertation indicate that it is likely possible to partially automate the

establishment of dependency relationships through implementation of dependency rules

during data exchange. As an example, in Chapter VIII there were numerous cases in

which the “Required by” data available from SEATools (a data field that contains a text

reference to which requirement led to the establishment of particular timing constraints)

was used in order to manually identify the cells in the QFD correlation matrix (the

Requirement x Specification matrix) that required input. It should be fairly

straightforward to construct a unique rule that would automatically insert a dependency

value (e.g. “3”) for any such a relationship. How to generalize such a relationship to

provide a range of values would be more problematic and would require more

sophisticated rule sets that could use limited supplied tool information to resolve often

subtle distinctions between dependencies.

As an additional note, consideration of this research issue identified a

shortcoming of the SEATools PSDL grammar, namely, the lack of a “Required By” field

for establishing data streams and state streams. Currently, SEATools provides no

traceability construct for the requirements leading to the creation of data streams. The

PSDL grammar should be modified to add this capability.

4. QFD Dependencies

a. Question
When identifying the dependencies between QFD items, do QFD

dependencies currently accommodate all the needed relationships presented by

"software" or is there a need to identify new relationships?

b. Answer
While certainly not exhaustive, the work done during this dissertation

research does not yet indicate the need for additional constructs beyond “dependencies”

with specific attributes such as name, description, range of values, type, default value,

origin, current value. However, there were issues as to how to properly interpret tool

values for particular dependency values so that they could be accurately deployed. As an

example, Requisite®Pro automatically tracks a dependency called “Stability.” This

 238

requirement attribute is a statement of how frequently a particular requirement has

changed when compared to other requirements. It is recorded as High, Medium, or Low.

The issue to the HFSE, was how to interpret this step function during deployment. For

instance, interpreting the function as High:Medium:Low = 3:2:1 produces different

results than interpreting it as 9:3:1. Thus, it would be useful to conduct additional

research to investigate this issue and attempt to identify characteristics that should be

considered when attempting to interpret the relationship of values within a particular

dependency.

5. QFD and the RH Model

a. Questions

To what objects, within the Software Evolution model, should QFD

information be applied? In extending the Relational Hypergraph, is it better to encode

QFD information in the step attributes or component attributes or would it be better to

define new dependency objects?

b. Answer
A direct comparison study comparing the benefits of encoding QFD

information in different objects within the Relational Hypergraph model was not

undertaken in this dissertation. Instead, dependencies were established by superceding

the primary_input_driven and secondary_input_driven dependencies of the RH model

and replacing them with a range of dependency types and values. In particular, steps

(activities denoting impetus to create components) were distinguished from dependencies

(relationships between two components). This was done not because of any particular

benefit provided by the RH model’s dependencies, but instead as an effort to minimize

the number of additional changes to the existing RH model.

6. Monitoring Artifacts

a. Questions
When integrating the Evolution System with the Object Federation, how

will the Evolution system "monitor" activity in the object federation? How will it

monitor activity in subordinate models and tools that does not trigger federation activity?

Which activities should be monitored to achieve which purposes?

 239

b. Answer

The mechanism employed in this dissertation to “monitor” activity was

very rudimentary and involved the importing of static data files created by subordinate

software development tools. As future research, investigation into the use of the dynamic

capabilities of middleware (e.g. CORBA, COABS, etc.) should be undertaken as a means

of performing active monitoring via publish and subscribe mechanisms.

7. HFSE Communications

a. Question
What medium will be used for communication between the Evolution

Model and the Object Federation, between the Object Federation and subordinate

tools/models (e.g. publish and subscribe, etc.)?

b. Answer
The full gamut of communications/data transport mechanisms was not

explored in this dissertation. The original idea was to implement a dynamic middleware

mechanism such as CORBA or COABS in order to dynamically keep track of changes to

all software development artifacts. Unfortunately, this concept proved to be too

ambitious and a less complex mechanism (importing static CSV files) was used to

demonstrate the theoretical feasibility of the HFSE. This does not negate the need for

future research that should be undertaken to prove the technical feasibility of the HFSE

(as opposed to the theoretical feasibility established in this dissertation). In such a study,

multiple mechanisms should be compared in order to determine the ideal

communications mechanism for the HFSE.

8. HFSE and APIs

a. Questions
To be realizable in practice, is the scope of tools to be integrated with the

HFSE restricted to those that provide APIs? Another issue is how to integrate GUI’s –

this probably cannot be done without changing them to some degree, and most real tools

do not provide source code. Thus, will GUI’s have to be replaced via API’s?

b. Answer
In order to keep this research within a manageable scope, only two tools

were examined in detail. One of these tools had a defined API (Rational’s RequisitePro)

 240

while the other tool did not (SEATools). In both cases there were no particular problems

in adapting the standard output of the tools in such a way to provide meaningful input to

CASES. However, this issue is far from settled. As future research, an investigation

should be undertaken to determine the feasibility of integrating into the HFSE a software

development tool that only provides graphic output.

9. Missing and Ambiguous Data

a. Question
How will missing and ambiguous data be accounted for in the HFSE?

b. Answer
As explained in Chapter V, Young’s OOMI methodology is used to

provide the bridge for missing or ambiguous data. The object relationships established in

the OOMI provide a facility for software engineers to provide specific translators

between separate object constructs in two or more object models. Within each of these

translators, the engineer can define specific cases to handle missing or ambiguous data.

10. HFSE Extensibility

a. Questions
What attributes within the HFSE must be modified to provide

extensibility? What mechanisms will be used to provide extensibility?

b. Answer
Chapter III explains the use of an underlying software development tool

ontology that is leveraged to form the FIOM upon which the HFSE is based. This

ontology was purposely constructed to be extensible so that other additional tools could

be added in the future.

11. Process Dependencies and the HFSE

a. Questions

When analyzing the Rational Software process, do the phases of the

Rational process have any effect on the visible/needed tool capabilities? What is their

operational significance, if any? Do they affect the HFSE modeling considerations at all?

b. Answer

In the end, this dissertation research did not focus on the Rational

Software development process. Instead the HFSE was established to be independent of

 241

process so that any software development process could be accommodated. Chapters IV,

VII, and VIII provide many examples of how any software development process could be

accommodated within the framework.

12. The HFSE and GUI Consoles

a. Questions
What elements of the HFSE lend themselves to establishing a GUI (for

research purposes only) that provide the researcher relevant information about the

underlying interaction of the tools/models? What items of information would be of

interest?

b. Answer

As discussed in Chapter VII one of the main extensions to CASES was the

addition of a graphical interface for providing informational views of software

development artifacts and dependencies. One of the additions included the development

of a graphical project schema drawing pane in which the software development process is

represented; this view shows the relationship between the major types of software

development artifacts and the activities that generate them. Additionally, two user-

defined views allow the software engineer to induce specific subgraphs of the underlying

hypergraph of the software development effort. Together, this graphical interface

provides a powerful tool for researchers to gain insight into the relationships between

software development artifacts.

However, it was noted during the testing and use of CASESv2.0 that this

interface could be improved. In particular, an additional useful feature would be a tool

that could assist the engineer in establishing correlation values; allowing the engineer to

complete pair-wise comparison of components.

C. RECOMMENDATIONS FOR FUTURE RESEARCH

The achieved short-term goal of the dissertation research demonstrated that

applying the HFSE to a selected tool/model set was theoretically feasible. The long-term

goals stemming from this research are to actually improve the efficiency of software

development processes and to improve developed software's quality, safety, and

reliability. Given the extensive scope of these long-term goals, there are a number of

 242

items that can be identified as future research that should be undertaken after the

completion of this dissertation.

1. Follow-on Hypotheses
The logical follow-on research to this dissertation is to establish that application

of the HFSE actually improves the efficiency of the software development process and

improves the software itself. Possible hypotheses include the following:

• Employing a Holistic Framework for Software Engineering
(HFSE) improves the efficiency and effectiveness of software
development processes.

• Employing a Holistic Framework for Software Engineering
(HFSE) improves the quality, safety, and reliability of software.

Each of these hypotheses is at least as large an undertaking as the research conducted in

this dissertation.

2. Comprehensive Model Validation
As discussed in Chapter VIII, the experiment undertaken to provide confirming

evidence of the dissertation hypothesis had a number of shortcomings. An additional line

of research related to the HFSE would be to undertake a more comprehensive experiment

to validate the HFSE model. In order to adequately validate the HFSE or to provide

evidence of any of the future hypotheses above, the researcher should undertake a

"Posttest-Only Control Group Design" experiment. This experiment would adequately

control both internal and external sources of invalidity.

Campbell and Stanley [CAMP63] point out that the "Posttest-Only Control Group

Design" experiment is a scientifically sound method of determining the effects of an

experimental variable on an observation population. This experiment can be

characterized as shown in Experiment 2.

R X O Experiment 2
R O

 In this experiment
 R ≡ Random selection,
 O ⊆ {all software development tools and models}, and
 X ≡ Application of the HFSE to O.

 243

This is an experimental design in which a randomly selected group that has

experienced X is compared with a randomly selected one that has not, for the purpose of

establishing the effect of X. In this specific experiment set in the context of validating

the benefits of the HFSE, the groups to be compared would be the same randomly

selected set of tools, randomly selected from the population of all software development

tools. One group is exposed to the HFSE and one is not. Both are used to undertake

identical software development efforts. Objective criteria for comparing performance of

the two observation groups would be established beforehand. The experiment should be

run several times to provide for a sufficiently large sample size from the available set of

tools/models.

3. Additional Future Research Issues
The following issues are relevant to future research efforts:

a. HFSE Providing a Common Tool View
What is the intellectual load of having to learn the idiosyncrasies of many

different, incompatible tool views? Eventually, a consistent integration layer may be

needed for intellectual manageability. The purpose of this layer would be to provide

simplification and standardization of the tool user view. Some re-engineering may be

needed. How do these issues relate to existing work? Does this reduce the size of this

overall problem?

b. Tool Replacement in the HFSE
Is it possible to replace one tool in the HFSE with another, while keeping

the integrity of the HFSE? Given the increasing longevity of software development

efforts, it is likely that tools used to develop the early implementation of a software

system will no longer be available decades later while the software is still being

maintained; what are the implications to this for the HFSE?

c. Tool Data Semantics

Is it possible to exploit the greater degree of formalization and explicit

semantics of data used by software tools to go further in automatic updating than was

possible for Young in the context of data in military databases?

 244

d. Specification Tradeoff Elasticity

In software, when there is positive or negative correlation between

specifications, how much trade-off in capability is possible? What are appropriate

software metrics for establishing trade-offs and benchmarking? What are effective

representations of "positive or negative correlations" in the context of supporting the

tradeoffs? If QFD does not support these, what additional constructs are needed?

e. HFSE Data Representation
What is the best medium for representation of information in the HFSE

(e.g. tree structure, hypergraph, etc.)? For what purposes is representation an issue? Is

there a need to assume some common aspects for all processes? Or is this part of the

meta-process (the process of managing/improving the software development process)?

f. Interoperability Tradeoffs
What is the tradeoff between interoperability via conformance to a single

global data standard (e.g., VHSL for VLSI designs, step for mechanical parts, etc.) versus

using multiple representations, ontologies, and translations as supported by the FIOM

approach?

g. Data Standards and the HFSE
Can the needs of the HFSE be met by data standards? If not, what are the

extra costs and benefits that ontologies provide? For example, type systems and

inheritance rules differ from one programming language to another. Does this impact the

required interoperability and integration of the models and tools? Does this issue require

specific features and capabilities in the HFSE?

h. Dependency Paths and Constraints
Do artifact dependencies always follow the step-to-artifact creation path?

Are there instances in which the dependencies should follow portions of the path and not

follow other portions of a path? Are there underlying constraints associated with the

creation of a dependency? Can a dependency be any definable metric or must it be

repeatable, ordered, and able to be deconstructed? Are there any other assumptions

underlying dependencies?

 245

i. Method Tailoring

Software Development Method Tailoring [FITZ03] is becoming an

important activity within software development, how can the benefits of the HFSE be

applied to this activity?

j. Scalability of the HFSE Approach
How scalable is the OOMI portion of the HFSE approach? As more and

more tools are added to an HFSE FIOM, does the overall federation complexity

significantly degrade the usefulness of the approach? If so, are there ways to reduce this

complexity (for instance, by totally reengineering the FIOM or by developing a second

complementary FIOM)?

k. Sensitivity Analysis

What sensitivity analysis mechanisms can be added to the HFSE to

provide useful decision-support information associated with the subjective nature of the

correlation and dependency valuations?

D. CONCLUDING REMARKS
Recall that challenge of "understanding" software from a holistic perspective

formed a significant part of the motivation for this dissertation research. In several U.S.

Government studies performed by Overton et. al. and presented in [PARI83], Overton

found that there were three main factors which reduced the rate at which a software

engineer can "understand" and decipher the intent and style of software written by

another: the limited rate that a person can perceive clues in a mass of software artifacts,

the human tendency to require more clues than are "logically" necessary in order

understand, and the human tendency to be distracted and to procrastinate. As

demonstrated in this dissertation research, the HFSE provides a framework in which the

"clues" are made more apparent to the software developer/maintainer.

The research presented in this dissertation should be viewed as a first step into a

larger and more complex investigation related to the application of the HFSE to software

development. While this dissertation demonstrated the feasibility of the approach, the

larger research thread aims to actually improve software development process efficiency

 246

and effectiveness by applying the HFSE in larger real-world contexts that will not only

let software engineers work faster, but let them work smarter with greater understanding

of customer desires and previous development work of the software development team.

The HFSE was established by embedding the relevant portions of the Quality Function

Deployment methodology into the already existing Relational Hypergraph Computer

Aided Software Evolution model, then integrating this extended evolution model with a

Federation Interoperability Object Model created from the tools and models use by the

development team. Together, this framework provides an improved evolution-based,

customer-focused holistic model upon which to develop safe, reliable software, produced

on time and on budget that fully meets the Department of Defense and the nation’s

software requirements.

 247

GLOSSARY

A

Analytic Hierarchy Process (AHP): a statistical process developed by [SAAT80] which
allows groups of hierarchically structured entities be valued in relation to each other.
Increasing, AHP is used to assist in establishing valuations in the QFD process.

Arcadia: a DARPA ISPE project in the early 1990’s consisting of validated research of

numerous tools that relied on using an object management system and a software
process language.

atomic component: An atomic component is a component that cannot be decomposed

into refined components [HARN99c].

atomic evolution step: An atomic evolution step is a step that cannot be decomposed

into refined steps [HARN99c].

atomic evolutionary hypergraph: An atomic evolutionary hypergraph is an

evolutionary hypergraph that cannot be decomposed into refined hypergraphs
[HARN99c].

atomic SPIDER: It is an atomic step processed in different entrance relationships

[HARN99c].

atomic step: An atomic step is a step that cannot be decomposed into refined steps

[HARN99c].

C

cardinality: A slot facet that describes whether the slot has just one value (single) or
more than one value (multiple). In Protégé-2000, Single is the default [PROT03b].

classes tab: The Protégé-2000 part used to create, view, revise, and save classes

[PROT03b].

clustering: an AHP technique by which non-independent components are “clustered”

into independent groups for comparison.

Component Class Representation (CCR): in the OOMI, the representation of a real

world entity in a legacy system.

 248

component management: Component management is one of CASES functions. In this

function stakeholders can enter, delete, retrieve, modify, and query the attributes of
atomic component from the hypertext database or software library (including
software base and design database) [HARN99c].

component traceability: Component traceability is one of CASES functions. In this

function an atomic component generated by its source atomic step can be traced not
only by primary input which is the link between old version and new version atomic
components, but also by a secondary input which is the link between source atomic
step and components on which it depends, such as requirements and problem reports
[HARN99c].

Component Trace View: in the HFSE, a user-defined view in which a subgraph is

induced from a single atomic component. The subgraph contains only those
components connected to the component of interest.

composite component: A composite component can be decomposed into refined

components [HARN99c].

composite edge: A composite edge can be decomposed into refined edges in a

hypergraph [HARN99c].

composite node: A composite node can be decomposed into refined nodes in a

hypergraph [HARN99c].

composite step: A composite step can be decomposed into refined steps [HARN99c].

Computer-Aided Prototyping System (CAPS): CAPS is an easy to use, visual and

integrated tool that can be used to rapidly design real-time applications using its
PSDL editor, reusable software database, program generator, real-time scheduler, and
so on [HARN99c]. CAPS has evolved into the prototyping suite known as
SEATools.

Computer Aided Resuscitation Algorithm (CARA): a real-world software system

used to control the amount of intravenous fluid pumped to a battlefield casualty.
CARA was used as a case study for the experiment conducted in this dissertation.

Computer-Aided Software Evolution System (CASES): CASES is the automated tool

support for the HFSE. It provides an evolution environment in which software
development artifact dependencies are captured and tracked.

Consistency Index (CI): defined by [SAAT80] for the AHP, the CI is an intermediate

calculation for measuring of the consistency a particular pair-wise comparison matrix

 249

Consistency Ratio (CR): defined by [SAAT80] for the AHP, the CR is a measure of the
consistency a particular pair-wise comparison matrix. CR’s < 0.1 are considered
acceptable.

constraint management: Constraint management is one of CASES functions. In this

function the project organizer sets constraints that affect the scheduling of steps, such
as predecessors, priorities, deadlines, estimated duration, earliest start times, finish
times, as well as constraints that affect personnel assignments, like security level and
skill requirements for a step [HARN99c].

Contextual Inquiry (CI): A method used by Digital Corporation for gathering customer

requirements by observing customers in their work environment.

Coverage Analysis: a QFD technique for ensuring there are sufficient implementation

components (e.g. are there enough specifications for implementing all of the
requirements).

current component: A current component is a component a stakeholder is working on

[HARN99c].

current step: A current step is a step a stakeholder is working on [HARN99c].

customer role: The roles of customers include system owners and end users

[HARN99c].

D

DARPA Agent Markup Language (DAML): a DARPA sponsored project in support of
the Semantic-Web in which a series of ontologies are linked together to provide
semantic interoperability between domains.

dependency: The dependencies among software evolution objects are classified into four

types: component-to-step, step-to-component, component-to-component, and step-to-
step dependencies [HARN99c]. QFD dependencies (defined later) are a form of
component-to-component dependencies.

dependency management: Dependency management is one of CASES functions. In this

function the dependencies among atomic components to an atomic step can be
identified and managed [HARN99c].

Dependency Threshold View: in the HFSE, a user-defined view in which a subgraph is

induced from a set of atomic components. The subgraph contains only those
components with dependency values greater than (or less than) a particular user-
specified threshold value.

 250

deployment, deployed: a set of calculations for a set of QFD dependency values

downstream (or upstream) in a software development effort.

direct slot: A slot attached directly to a class (in contrast to a slot which is inherited)

[PROT03b].

domain: A particular field of knowledge, such software engineering [PROT03b].

downstream: in the direction of temporal creation of software artifacts (e.g. code is

"downstream" of requirements (in the same development cycle)).

E

end user: The end user is a person who uses the software product and manipulate the
software system [HARN99c].

Evolution Control System (ECS): The ECS provides automated assistance for the

software evolution process in an uncertain environment where designer tasks and
their properties are always changing. An ECS has two main functions. The first is to
control and manage evolving software system components (version control and
configuration management). The second is to control and coordinate evolution team
interactions (planning and scheduling software evolution tasks, which they refer to as
evolution steps) [HARN99c].

evolution history merging: Creating a new component based on two primary input

components is called software evolution history merging [HARN99c].

evolution history splitting: Creating a new component in a variant different from the

original variant is called software evolution history splitting [HARN99c].

evolutionary hypergraph: An evolutionary hypergraph is a labeled, directed, and

acyclic hypergraph together with component and step attributes. The evolutionary
hypergraph is a multi-level structure due to the refinement of the hyperedge
[HARN99c].

F

facets: The attributes of a slot. Some facets depend on the value of the type facet. For
example, an integer slot type has facets for Minimum and Maximum [PROT03b].

feature model: a coherent model of the common and variable properties of concepts

(and their interdependencies) of a potential software system [CZAR00].

 251

Federation Entity (FE): the grouping of all FEVs for a single real-world entity.
Together the FE constitutes the representation of a single real-world entity between
all systems in the federation.

Federation Entity View (FEV): a single relationship between a CCR and an FCR.

Federation Interoperability Object Model (FIOM): the grouping of all FEs for a

federation of interest.

Federation Class Representation (FCR): the class representation of a single entity at

the federation level.

forms tab: The Protégé-2000 part used to create the forms for acquiring instances of

classes. It may also be used to view, revise, and save the forms [PROT03b].

G

graph model (or graph data model): The graph model represents the evolution history
as a directed acyclic graph G = [C, S, I, O] which is a bipartite with respect to the
edges I and O. To model the hierarchical structure of the evolution history, the graph
model was modified to be a graph G = [C, S, CE, SE, I, O] [HARN99c].

H

Holistic Framework for Software Engineering (HFSE): a conceptual framework for
establishing interoperability between software development tools as well as a
methodology (with tool support) that assembles the necessary objects and
interoperability constructs for tracking and leveraging the dependencies between
development artifacts.

hyperedge: The hyperedge is a multi-level structure of the evolution step [HARN99c].

hypergraph: The hypergraph is a DAG (directed acyclic graph) with no looping paths

[HARN99c].

hypergraph model: The hypergraph model is introduced to formalize the hierarchical

structure of the evolution history in more detail [HARN99c].

 252

I

inference rule management: Inference rule management is one of CASES functions. In
this function the stakeholders can specify and adjust inference rules related to
SPIDER formation, scheduling and assignment constraints, policies, special
assignments, and so on, to help them resolve the design and management issues of the
software development process [HARN99c].

inheritance: A parent-child (superclass-subclass) relationship between two classes. A

child (subclass) inherits the slots of its parent classes (superclasses) [PROT03b].

inherited slot: A slot that is attached to a class via inheritance from a parent class

[PROT03b].

input component: The input component to a current step is a set that combines a primary

input component set and a secondary input component set [HARN99c].

input component search engine: The input component search engine can trace the

dependencies among the software evolution components with the inference rules to
find the input scope of the induced step [HARN99c].

instance (KB value): Concrete occurrence of information about a domain that is entered

into a knowledge base. For example, Fran Smith might be an instance for a Name
slot. An instances is entered via a form generated by Protégé-2000 [PROT03b].

instance (slot type): A type of slot whose value is the instance of a class [PROT03b].

instances tab: The Protégé-2000 part used to acquire instances of classes. It may also be

used to view, revise, and save the instances [PROT03b].

Integrated Computer Aided Software Engineering (I-CASE): a software

development approach that relies on integrating a several CASE tools.

Integrated Software Development Environment (ISDE): a software development

approach providing common services and tools for multiple aspects of the software
development effort.

Integrated Software Project (or Programming) Environment (ISPE): a software

development approach providing common services and tools for multiple aspects of
the software development effort. The terms ISDE and ISPE are used interchangeably.

 253

Issue-Based Information Systems (IBIS) model: IBIS model follows the principle that
the design process for complex systems is fundamentally a conversation among the
stakeholders to resolve design issues. This model was extended to encompass
prototype demos, analysis, and design activities and applied to design a decision
support mechanism for software requirements engineering [HARN99c].

K

Kano Model: the grouping of customer requirements into three broad areas: 1) Normal
requirements -- those requirements for which the customer receives proportional
satisfaction upon the delivery of functionality meeting the requirements, 2) expected
requirements -- those requirements for which the customer is dissatisfied if the
requirements fails to be fulfilled in the delivered software, and 3) exciting
requirements -- those requirements for which the customer receives positive
satisfaction upon fulfillment.

knowledge-acquisition tool: A tool used to build a knowledge base by acquiring

instances. In Protégé-2000, the forms comprise the KA tool [PROT03b].

knowledge base (KB): A set of instances of classes which may be used by PSMs

[PROT03b].

knowledge-based system: A computer system that includes a knowledge base about a

domain and programs that include rules for processing the knowledge and for solving
problems relating to the domain [PROT03b].

M

minimal hypergraph: A minimal hypergraph is a minimal unit of hypergraph whose
edge set has only one edge [HARN99c].

O

Object-Oriented Model for Interoperability (OOMI): a model developed by
[YOUN02b] which resolves modeling differences in a federation of independently
developed heterogeneous systems, thus enabling system interoperation.

OOMI Integrated Development Environment (OOMI IDE): a specialized toolset in

support of the OOMI that is used to construct the FIOM.

 254

ontology: A model of a particular field of knowledge - the concepts and their attributes,
as well as the relationships between the concepts. In Protégé-2000, an ontology is
represented as a set of classes with their associated slots [PROT03b].

output component: A step can generate one unique output component [HARN99c].

P

.pins file: A Protégé-2000 file in clips format that contains instances [PROT03b].

.pont file: A Protégé-2000 file in clips format that contains an ontology [PROT03b].

.pprj file: A Protégé-2000 file that contains a project. A project file contains the

customized form information and references to external sources of the domain
information [PROT03b].

path: A path in the hypergraph is an evolution history whose components, including

nodes and hyperedges, can be traced [HARN99c].

personnel management: Personnel management is one of CASES functions. In this

function project managers control the current status of the project personnel such as
skill, skill level, security level, on-hand jobs, and so forth [HARN99c].

primary-input-driven hypergraph: Each path in a primary-input-driven hypergraph is

constructed by primary-input-driven path [HARN99c].

primary-input-driven path: If there exist an input node and an output node to an

evolutionary hyperedge that are different versions of the same component then the
path from the input node via the hyperedge to the output node is called a primary-
input-driven path [HARN99c].

primary input component: If there exist an input component and an output component

to a step that are different versions of the same component then the input component
is called a primary input component [HARN99c].

primitive component: The primitive component that is a source component can not be

produced by any step [HARN99c].

project evaluation: Project evaluation is one of CASES functions. In this function after

project organizers propose an evolution step as a project, this project will be
evaluated by project evaluators according to the possibility analysis of executing this
software evolution step [HARN99c].

 255

project schema: a top-level evolutionary hypergraph which is an abstraction of the
software development process being modeled within the HFSE. It is this abstraction
which is first modeled within the CASES v2.0 drawing frame.

project team: In CASES, there are three kinds of project teams: the project organization

team, the system analysis team, and the system design team [HARN99c].

Prototype System Description Language (PSDL): PSDL is a specification language

that is used in CAPS. PSDL provides graphical notation for dataflow diagrams
enhanced with nonprocedural control timing constraints [HARN99c].

prototyping method: The prototyping process repeats a guess/check/modify cycle until

the users agree that the demonstrated behavior is acceptable [HARN99c].

Q

Quality Function Deployment (QFD): a requirements based methodology by which
attributes of quality are deployed throughout a development effort.

QFD correlation: a user specified value between two atomic components that represents

the strength of relationship between the components. Typical QFD correlation
schemes use 0:1:3:9 to represent the strength of relationship; however, a user may
specify a different scheme to meet particular needs (even one that uses negative
values).

QFD dependency: a valued component attribute, which in combination with other

dependency values can be “deployed” to other components.

QFD dependency deployment: a set of calculations for a set of QFD dependency values

downstream (or upstream) in a software development effort.

R

Random Index (RI): in AHP [SAAT80], RI is an empirically derived average of the
consistency indices (CIs) of a set of randomly generated right, diagonal, reciprocal
matrices.

Rational Rose: a Rational Software Corporation software development tool that allows

designers to model a software system using UML.

Rational Requisite®Pro: a Rational Software Corporation software requirements

management tool.

 256

Rational Unified Process (RUP): a software engineering process, which espouses a
disciplined approach to assigning tasks and responsibilities within a software
development organization. Its goal is to ensure the production of high-quality
software that meets the needs of its end-users, within a predictable schedule and
budget. The RUP is also considered to be a process product, developed and
maintained by Rational® Software [RATI98].

relational hypergraph: A relational hypergraph is an evolutionary hypergraph in which

the dependency relationships between components and steps can have a hierarchy of
specialized interpretations [HARN99c].

Relational Hypergraph Model (RH model): The RH model is a formal model for the

software evolution which can help us develop tools to manage both the activities in a
software development project and the products that those activities produce
[HARN99c].

relational hypergraph net: The relational hypergraph net is a relational hypergraph

which transfers a primary input hypergraph and secondary input hypergraphs into a
top-level evolutionary hypergraph and an atomic evolutionary hypergraph. Therefore,
a relational hypergraph net includes a top-level relational hypergraph net and an
atomic level relational hypergraph net [HARN99c].

reusable software evolution component: The components can be reused in software

evolution processes [HARN99c].

S

secondary-input-driven hypergraph: Each path in a secondary-input-driven hypergraph
is constructed by secondary-input-driven path [HARN99c].

secondary-input-driven path: If there exist an input node and an output node to an

evolutionary hyperedge that are different components then the path from the input
node via the hyperedge to the output node is called a secondary-input-driven path
[HARN99c].

secondary input component: If there exist an input component and an output component

to a step that are different components, then the input component is called a
secondary input component [HARN99c].

slot: An attribute of a class. For example, a physician class might have name, title, and

phone number as slots [PROT03b].

slots tab: The Protégé-2000 part that allows you to create, view, edit, and delete slots

[PROT03b].

 257

Software Development Life Cycle (SDLC): The SDLC model is called the waterfall

model whose phases include requirements gathering, analysis, modeling or design,
coding and testing [HARN99c].

Software Engineering Automation Tools (SEATools): the suite of software

prototyping support tools developed at the Naval Postgraduate School. Evolved from
CAPS and Distributed CAPS (DCAPS).

Software Engineering Body of Knowledge (SWEBOK): an ongoing IEEE project

devoted to providing a "consensually-validated characterization of the bounds of the
software engineering discipline" [SWEB01]. The SWEBOK categorizes the existing
(and future) knowledge for the domain of software engineering; however, it does not
attempt to define that knowledge.

software evolution: We consider software evolution to include all the activities that

change a software system, as well as the relationships among those activities
[HARN99c].

software evolution component: Software evolution components include software and all

of the components that are related to software evolution, such as criticisms, issues,
requirements, specifications, modules, programs, optimizations, test scenarios, and
stakeholders, within software evolution processes [HARN99c].

software evolution history (or evolution history): We use relational hypergraph to

construct software evolution history [HARN99c].

software evolution management: We use dependency rules to manage software

evolution objects [HARN99c].

software evolution object: Software evolution objects include software evolution steps

and software evolution components [HARN99c].

software evolution process: Software evolution process includes software prototype

evolution process and software product generation process [HARN99c].

software evolution step (or evolution step): Each software evolution step has an

estimated task duration, deadline, priority, and a required skill level. Software
evolution steps in software evolution process include: software prototype demo step,
issue analysis step, requirement analysis step, specification design step, module
implementation step, program integration step, software product demo step, and
software product implementation step [HARN99c].

software evolution traceability: The issues of traceability in software evolution can be

represented by paths of the hypergraph [HARN99c].

 258

software project: A software project is a project that can be built by the RH model,

organized by project organizers, evaluated by project evaluators, and completed by
system analysts and system designers [HARN99c].

Software Quality Function Deployment (SQFD): the QFD process applied to software.

SPIDER: SPIDER denotes the Step Processed In Different Entrance Relationships

[HARN99c].

Statistical Process Control (SPC): The removal of software defects through appraisals;

logging and correcting customer complaints; completing software reviews,
inspections, walkthroughs; and performing software testing.

step management: Step management is one of CASES functions. In this function the

content of the top-level step can be automatically generated, refined, and queried. The
content of the atomic step can also be automatically generated, combined, and queried
[HARN99c].

step refinement: Step refinement is one of CASES functions. In this function, the

software evolution top-level step can be refined into a set of atomic steps
[HARN99c].

Superfluous Artifact Analysis: an HFSE analysis by which superfluous components

(artifacts in the design that are not needed and have been erroneously introduced) are
identified.

T

top-level evolution step: The top-level evolution step is the root step of an evolutionary
hypergraph [HARN99c].

top-level evolutionary hypergraph: The top-level evolution hypergraph is the root of an

evolutionary hypergraph [HARN99c].

top-level relational hypergraph net: A top-level relational hypergraph net is composed

of a set of top-level SPIDERs. The top-level relational hypergraph net describes the
relationships not only among each top-level step and its input and output nodes but
also among each composite node and its subnodes [HARN99c].

top-level SPIDER: This is a top-level step processed in different entrance relationships

[HARN99c].

type: A slot facet that identifies the kind of values a slot may have - Any, boolean, float,

instance, integer, string, or symbol [PROT03b].

 259

U

upstream: against the direction of the temporal creation of software artifacts (e.g.
requirements are "upstream" of specifications (in the same development cycle)).

V

variant: Variants represent alternative formulations of a software object with different
objectives, such as running on different operating systems or serving different user
communities [HARN99c].

version: A version of an object is one of the attributes of this object that can be

represented as a string type containing the concatenation of an object identifier, a
variant number, and a version number [HARN99c].

version control and configuration management: Version control and configuration

management is one of CASES functions. In this function, a labeling function of
CASES automatically determines the version and variation number of output
components of a step. Software evolution process loops of CASES automatically
construct the configuration management [HARN99c].

 260

THIS PAGE INTENTIONALLY LEFT BLANK

 261

APPENDIX A: CASES USE CASES

A. INTRODUCTION
This appendix provides the detailed uses cases for the Computer-Aided Software

Evolution System (CASES) and provides a statement as to whether the use case has been

implemented in CASESv2.0. These use cases were developed in support of this

dissertation in order to appropriately identify the required system responses of the

evolution tool support. Figure 92 illustrates the context within which CASES operates.

Protégé

OOMI IDE

CASES

SW Tool
<<uses translators>>

<<uses XML schemas>>

SW Artifacts<<uses>>

<<creates>>

Ontology Librarian

Software Engr

Interoperability Engr

Figure 92 CASES Context Diagram

As discussed in Chapter III, the Ontology Librarian is responsible for initially developing

the federation and tool ontologies and entering them into Protégé. Protégé produces the

XML Schemas for the FIOM which are imported into the OOMI IDE. Note that

 262

CASES then imports these Java translators from the OOMI IDE so that it can track

software evolution artifacts of subordinate tools in the HFSE federation.

B. CASES TOP-LEVEL USE CASES
Figure 93 illustrates CASES top-level use cases. Note that the six separate use

cases address the functionality required by the CASES context diagram above (Figure 92)

SW Engineer

1.0 Import
Translators

2.0 Specify SW
Process

3.0 Specify
Dependencies

4.0 Register
Components &

Steps

5.0 Track Artifacts
& Activities

6.0 Select views

Babel OOMI IDE

SW Development Tools

Figure 93 CASES Top-Level Use Cases

These use cases can be more fully stated as the following:

1.0 Import translators from Babel.
2.0 Software Engineer specifies Software Process to be used.
3.0 Software Engineer specifies component Dependencies.
4.0 Software Engineer registers components/steps to external tool artifacts/activities

for automated tracking.
5.0 CASES through middleware mechanism collects/tracks artifacts and activities.
6.0 Software Engineer selects views of dependent artifacts.

Each of these use cases is more fully explained in the remaining sections of the appendix.

 263

C. USE CASE 1.0: IMPORT TRANSLATORS FROM BABEL
The OOMI IDE generates Java translators that can be wrapped or embedded into

middleware to translate XML documents generated by one system into XML documents

that can used by another system. This use case delineates how CASES imports those

translators so that they can be used for tracking specific artifacts between the two (or

more) systems. Figure 94 illustrates the use case and Table 49 provides a description of

the user and system responses within the use case.

SW Engineer

1.0 Import
Translators

Babel OOMI IDE

Figure 94 Use Case 1.0: Import Translators from Babel

Actor System
1 The user selects "Import Translators"

from the menu bar
The system responds with a file
browser pointed at the current directory

2 The user browses to the desired file
location containing the java translators
and selects the one(s) he wishes to
import.

The system loads the translators into
the interoperability editor.

Table 49 Actor-System Responses for Use Case 1.0

This use case has not been implemented in CASESv2.0.

D. USE CASE 2.0: SOFTWARE ENGINEER SPECIFIES SOFTWRE
PROCESS
One of the major shortcomings of previous versions of CASES was that the tool

was specifically designed to work only with a single software development process

model (the Evolutionary Prototyping Model). This dissertation provides an improvement

over the previous versions by allowing software engineers to graphically define the

software development process that they actually use, specifying the components

(artifacts) that are produced in their process and the steps (activities) that they perform to

create those components. Use case 2.0 is devoted to providing the engineer that

functionality and is shown below in Figure 95.

 264

SW Engineer

2.0 Specify SW
Process

Figure 95 Use Case 2.0: Software Engineer Specifies Software Process

Because this functionality is relatively complex, this use case has been

decomposed into a number of more detailed cases as follows:

2.1 Load existing software process.
2.2 Create components and component attributes.
2.3 Edit components and component attributes.
2.4 Create steps and step attributes.
2.5 Edit steps and step attributes.
2.6 Move (rearrange) components and steps.
2.7 Delete components and steps.
2.8 Decompose components into subcomponents (e.g., Specifications

SpecGroup1, SpecGroup2, etc.).
2.9 Decompose steps (e.g., Analyze Requirements Establish Constraints +

Formulate Questions + Formalize Requirements).

The results of this use case (and its subordinate use cases) is that CASES provides a

graphic view of the software process that the engineer uses and establishes directories for

the accumulation of the actual software artifacts.

1. Use Case 2.1: Load Existing Software Process (2 Scenarios)
Use case 2.1 allows a software engineer to open an already existing software

process model. An existing process model could be one that the engineer had already

been using (scenario 1), or it could be a "template" for the start of refining his own

specific process model (scenario 2). The Actor-System sequences for these two scenarios

are shown in Table 50 and Table 51 respectively.

Actor System
1 The user selects "Open Existing

Project Schema"
The system responds with a file
browser pointed at the current directory

2 The user browses to the desired
existing project schemas and selects
the one he wishes to use

The system loads the project schema
into the editor.

3 The user may then edit the schema as
desired

The system responds as per use cases
2.2 - 2.9

Table 50 Actor-System Responses for Use Case 2.1 (Scenario 1)

 265

Actor System
1 The user selects "Open Pre-Defined

Project Schema"
The system responds with a dialog that
lists the available pre-defined project
schemas (e.g. evolutionary prototyping
model, waterfall model, spiral
development model)

2 The user selects the desired schema The system responds with a "Save As"
dialog.

3 The user saves the loaded schema as a
new project

The system creates new cfg,
component, and step directories (all
necessary project directories) in a
folder with the name supplied by the
user

4 The user may then edit the schema as
desired

The system responds as per use cases
2.2 - 2.9

Table 51 Actor-System Responses for Use Case 2.1 (Scenario 2)

The use case defined in Scenario 1 has been implemented in CASESv2.0; the use case in

Scenario 2 has not been implemented in CASESv2.0.

2. Use Case 2.2: Create Components and Component Attributes
Once CASES has been started and either a new project has been created, pre-

existing project opened, or a project schema template opened; the editing frame is then

available for users to create components in the schema. Actually the engineer is creating

an abstract container for the components (the artifacts) of their particular software

development process. Table 52 lists the Actor-System responses for creating components

within CASES.

Actor System
1 The user selects the "component"

button from the Project Schema tool
bar.

The system responds by activating the
cursor to allow the user to place
"components" within the drawing
frame.

2 The user places a component on the
drawing frame by clicking the left
mouse button.

The system draws a named circle on
the drawing frame. Initially, the name
is a unique default component
identifier.

The system resets the cursor to allow
the placement of additional
components.

Table 52 Actor-System Responses for Use Case 2.2

 266

This use case (use case 2.2) has been implemented in CASESv2.0.

3. Use Case 2.3: Edit Components and Component Attributes (2
Scenarios)

After the user has created components within the project schema drawing frame,

he can then edit the attributes of those components through two different means

illustrated in the Actor-System responses shown in Table 53 and Table 54.

Actor System
1 After selecting the "select" button on

the Project Schema tool bar, the user
double clicks on an established
component

The system responds by displaying the
component attribute dialog.

2 The user edits the attribute fields in
the dialog:
• Component ID: a unique
component identifier
• Component Name: a 50 character
string
• Component Description: a 250
character text field

The system reports an error (and
prevents the user from exiting the
dialog) if the user attempts to create a
component with an ID that is identical
to an existing component

The system stores the component
attributes.

The system renames the component
file in accordance with the component
ID.

Table 53 Actor-System Responses for Use Case 2.3 (Scenario 1)

 267

Actor System
1 After selecting the "select" button on

the Project Schema tool bar, the user
right clicks on an established
component.

The system offers the user an extended
menu of the following:
• Properties
• Decompose
• Delete
• QFD
• Import CSV File

2 The user selects "Properties" The system responds by displaying the
component attribute dialog.

3 The user edits the attribute fields in
the dialog.
• Component ID: a unique
component identifier
• Component Name: a 50 character
string
• Component Description: a 250
character text field

The system reports an error (and
prevents the user from exiting the
dialog) if the user attempts to create a
component with an ID that is identical
to an existing component

The system stores the component
attributes.

The system renames the component
file in accordance with the component
ID.

Table 54 Actor-System Responses for Use Case 2.3 (Scenario 2)

Both scenarios of use case 2.3 have been implemented in CASESv2.0.

4. Use Case 2.4: Create Steps and Step Attributes
In much the same way that the user created the components, the user can create

steps for the project schema. The Actor-System responses for the use case are shown in

Table 55.

 268

Actor System
1 The user selects the "step" button from

the Project Schema tool bar.
The system responds by activating the
cursor to allow the user to draw "steps"
between exiting components within the
drawing frame.

2 The user draws a step by left clicking
once on an existing component and
then left clicking a second time on
another component.

The system draws a named line on the
drawing frame between the two
components. Initially, the name is a
unique default step identifier.

The system resets the cursor to allow
the placement of additional steps.

Table 55 Actor-System Responses for Use Case 2.4

This use case (use case 2.4) has been implemented in CASESv2.0.

5. Use Case 2.5: Edit Steps and Step Attributes (2 Scenarios)
After the user has created steps within the project schema drawing frame, he can

then edit the attributes of those steps through two different means illustrated in the Actor-

System responses shown in Table 56 and Table 57.

Actor System
1 After selecting the "select" button on

the Project Schema tool bar, the user
double clicks on an established step.

The system responds by displaying the
step attribute dialog.

2 The user edits the attribute fields in
the dialog.
• Step ID: a unique step identifier
• Step Name: a 50 character string
• Step Description: a 250 character
text field

The system reports an error (and
prevents the user from exiting the
dialog) if the user attempts to create a
step with an ID that is identical to an
existing step.

The system stores the step attributes.

The system renames the step file in
accordance with the step ID.

Table 56 Actor-System Responses for Use Case 2.5 (Scenario 1)

 269

Actor System
1 After selecting the "select" button on

the Project Schema tool bar, the user
right clicks on an established step.

The system offers the user an extended
menu as follows:
• Properties
• Decompose
• Delete
• QFD
• Import CSV File

2 The user selects "Properties" The system responds by displaying the
step attribute dialog.

3 The user edits the attribute fields in
the dialog.
• Step ID: a unique step identifier
• Step Name: a 50 character string
• Step Description: a 250 character
text field

The system reports an error (and
prevents the user from exiting the
dialog) if the user attempts to create a
step with an ID that is identical to an
existing step.

The system stores the step attributes.

The system renames the step file in
accordance with the step ID.

Table 57 Actor-System Responses for Use Case 2.5 (Scenario 2)

Both scenarios of use case 2.5 have been implemented in CASESv2.0

6. Use Case 2.6: Move (Rearrange) Components
Once placed on the drawing frame, the user can move components around within

the project schema. Table 58 describes the Actor-System responses for use case 2.6.

Actor System
1 After selecting the "select" button on

the Project Schema tool bar, the user
single clicks and holds onto an
established component. The user
drags the component to a new desired
location.

The system responds by visually
cueing the user that the component has
been selected (e.g. outlines the
component in bold).

Then the system drags the component
to the new location designated by the
user. Any step lines attached to the
"moved" component will also move
along with the component.

Table 58 Actor-System Responses for Use Case 2.6

With the exception of providing a visual cue (bold outline), this use case (use case 2.6)

has been implemented in CASESv2.0.

 270

7. Use Case 2.7: Delete Components and Steps (2 Scenarios)
The user can delete components and steps by two different means as described by

the Actor-System responses in Table 59 and Table 60 below.

Actor System
1 After selecting the "select" button on

the Project Schema tool bar, the user
right clicks on an established
component or step.

The system offers the user an extended
menu as follows:
• Properties
• Decompose
• Delete
• QFD
• Import CSV File

2 The user selects "Delete" The system responds with a "Do you
really want to Delete?" dialog.

3 The user selects either "Delete" or
"Cancel"

If the user selects "Delete", the
component (and any steps connected to
the component) or step is deleted.

The system deletes all appropriate files.

If the user selects "Cancel", then the
system closes the dialog without
deleting the item.

Table 59 Actor-System Responses for Use Case 2.7 (Scenario 1)

 271

Actor System
1 After selecting the "select" button on

the Project Schema tool bar, the user
selects an established component or
step with a single left mouse click.

The system responds by visually
queuing the user that the component
has been selected (e.g. outlines the
component in bold).

2 The user presses the "Delete" button
on the keyboard.

The system responds with a "Do you
really want to Delete?" dialog.

3 The user selects either "Delete" or
"Cancel" in the dialog.

If the user selects "Delete", the
component (and any steps connected to
the component) or step is deleted.

The system deletes all appropriate files.

If the user selects "Cancel", then the
system closes the dialog without
deleting the item.

Table 60 Actor-System Responses for Use Case 2.7 (Scenario 2)

Neither of the scenarios of use case 2.7 has been implemented in CASESv2.0. It is

currently not possible to delete components; instead, the user must reconstruct the project

schema.

8. Use Case 2.8: Decompose Components into Subcomponents
After the user has placed components on the drawing frame, he can then

decompose a particular component into subcomponents (e.g., Specifications

Specification Group1, Specification Group2, etc.). Actor-System responses for this use

case are described in Table 61.

 272

Actor System
1 After selecting the "select" button on

the Project Schema tool bar, the user
right clicks on an established
component.

The system offers the user an extended
menu as follows:
• Properties
• Decompose
• Delete
• QFD
• Import CSV File

2 The user selects "Decompose" The system responds with a new
drawing frame.

Existing input and output steps from
the "parent" component are
automatically placed into the new
drawing frame with an "External" label
at the appropriate end.

3 The user continues to define the
software development process in
accordance with use cases 2.2 - 2.9

The system updates the "parent"
component attributes.

The system provides a visual queue
that the component is decomposable
(double circle).
e.g.

Table 61 Actor-System Responses for Use Case 2.8

Use case 2.8 has not been implemented in CASESv2.0.

9. Use Case 2.9: Decompose Steps
The user has the ability to decompose steps into a sequence of atomic steps and

components (e.g., “Analyze Requirements” becomes (Establish Constraints

Constraints Formulate Questions Questions Formalize Requirements Formal

Requirements)). The Actor-System responses are described in Table 62.

 273

Actor System
1 After selecting the "select" button on

the Project Schema tool bar, the user
right clicks on an established step.

The system offers the user an extended
menu as follows:
• Properties
• Decompose
• Delete
• QFD
• Import CSV File

2 The user selects "Decompose" The system responds with a new
drawing frame.

Existing input and output components
from the "parent" step are
automatically placed into the new
drawing frame.

3 The user defines the additional more
detailed description of the step of the
software development process in
accordance with use cases 2.4 - 2.7
and 2.9 by adding steps and
components.

The system updates the "parent" step
attributes.

The system provides a visual queue
that the step is decomposable (double
line).

e.g.

Table 62 Actor-System Responses for Use Case 2.9

Use case 2.9 has not been implemented in CASESv2.0.

E. USE CASE 3.0: SOFTWARE ENGINEER SPECIFIES COMPONENT
DEPENDENCIES
After the software engineer has constructed the project schema that lays out the

software development process that he is using, the next step is to specify those

dependencies that he wishes to "deploy" throughout the development effort. This use

case is shown below in Figure 96.

Dev Spec

 274

SW Engineer

3.0 Specify
Dependencies

Figure 96 Use Case 3.0: Software Engineer Specifies Component Dependencies

This use case is then further decomposed into several more detailed use cases as follows:

3.1 Create dependency (establish type of dependency and dependency attributes).
3.2 Establish dependency linkages between components.
3.3 Deploy dependency through the development effort.

The result of this set of use cases is that the system provides the user the ability to define

a particular dependency. The user can then edit the relationships between components

and set specific values for the dependency related to specific components within a QFD

matrix structure. The user can then "deploy" the dependency to the next component by

clicking the "calculate" button or throughout the entire development effort by clicking the

"synchronize" button.

1. Use Case 3.1: Create Dependency
In this use case the user establishes type of dependency and defines dependency

attributes. The Actor-System responses are described below in Table 63

Actor System
1 The user selects the "Create

Dependency" menu item.
The system displays the "New
Dependency" dialog.

2 The user inputs attributes for the new
dependency as follows:
• Short Name
• Description
• Dependency Type (e.g. Risk,
Safety, Parent/child, etc.)
• Dependency Value Range (if
applicable -- Boolean, 1-9, +/-, 1/3/9,
based on QFD Methodology)
• Dependency Default Value
• The origin component of the
dependency

The system stores the attributes.

Table 63 Actor-System Responses for Use Case 3.1

 275

Only a portion of this use case (use case 3.1) has been implemented in CASESv2.0. The

“Dependency Type” and “Dependency Value Range” currently have no functionality in

the system. These entries exist in the creation dialog, but currently serve no purpose.

2. Use Case 3.2: Establish Dependency Linkages Between Components
(2 Scenarios)

After creating a dependency, the user can then edit the dependency values and the

correlation between components that the dependency is to be "deployed across." There

are two scenarios for establishing the correlations. In Scenario 1, the engineer defines

dependencies between different artifacts (e.g. R1 S3). In scenario 2 the user

establishes dependencies between the same type of component (e.g., R1 R3.2). The

Actor-System responses for these two scenarios are described in Table 64 and Table 65

respectively.

Actor System
1 After selecting the

"select" button on the
Project Schema tool
bar, the user right
clicks on an
established step.

The system offers the user an extended menu as follows:
• Properties
• Decompose
• Delete
• QFD
• Import CSV File

2 The user selects
"QFD" and further
selects the particular
dependency that he
wants to edit.

 The system produces a QFD matrix rectangular matrix.

Inside the matrix are correlations between the two
components. The value of the dependency is the default
value specified in the create dependency dialog or an
imported value. The initial correlation value in the matrix
is set to "0". A color (e.g. yellow) is used to indicate
which values the user has not yet edited as follows:
 Spec1 Spec2 Spec3

Req1 1 0 0 0
Req2 4 0 3 0
Req3 3 0 0 0
Req4 4 0 1 0

3 The user edits values
of dependency and
correlation

The system records the values and saves them to file.

Table 64 Actor-System Responses for Use Case 3.2 (Scenario 1)

 276

Actor System
1 After selecting the "select" button on

the Project Schema tool bar, the user
right clicks on an established
component.

The system offers the user an extended
menu as follows:
• Properties
• Decompose
• Delete
• QFD
• Import CSV File

2 The user selects "QFD" and further
selects the particular dependency that
he wants to edit.

 The system produces a QFD matrix
rectangular matrix.

Inside the matrix are correlations
between the same components. The
default value of the dependency is the
default value specified in the create
dependency dialog. The initial
correlation value in the matrix is set to
"0". A color (e.g. yellow) is used to
indicate which values the user has not
yet edited. A different color (e.g. red)
is used to indicate un-needed
correlations between the same set of
components as follows:
 Req1 Req2 Req3
 1 4 3
Req1 1 0 0 0
Req2 4 0 0 0
Req3 3 0 0 0

3 The user edits values of dependency

and correlation.
The system records the values and
saves them to file.

Table 65 Actor-System Responses for Use Case 3.2 (Scenario 2)

Except for the use of color-coding to cue the user as to which entries have been edited,

use case 3.2 Scenario 1 has been implemented in CASESv2.0. Use Case 3.2 Scenario 2

ahs been implemented; however, this scenario currently serves no function. Eventually,

Scenario 2 will be used to establish trade-offs between the same type of components.

 277

3. Use Case 3.3: Deploy Dependency Through the Development Effort
(2 Scenarios)

After creating a dependency, correlation values, and dependency values, the user

can deploy the dependency across components. There are two scenarios for deploying

the dependency shown in Table 66 and Table 67.

Actor System
1 After the user has edited all desired

values of dependency and correlation,
he selects the "Calculate" button on
the QFD dialog.

The system automatically calculates the
appropriate value of dependency for the
deployed component and displays those
values in the QFD dialog

Table 66 Actor-System Responses for Use Case 3.3 (Scenario 1)

Actor System
1 After the user has edited all desired

values of dependency and correlation,
he selects the "Synchronize" button on
the tool bar.

The system automatically calculates the
appropriate values of dependency for all
QFD matrices in the system. The
appropriate values of the dependency
are displayed the next time the user
opens a particular QFD dialog.

Table 67 Actor-System Responses for Use Case 3.3 (Scenario 2)

Both scenarios of Use Case 3.3 have been implemented in CASESv2.0.

F. REGISTER COMPONENTS AND STEPS TO EXTERNAL TOOL

ARTIFACTS AND ACTIVITIES
The project schema created in use case 1.0 is an abstract representation of artifacts

created in the software development effort. Use Case 4.0 allows CASES to import data

about real artifacts in other software tools so that dependencies between these artifacts

can be established and tracked. Figure 97 below illustrates this use case.

SW Engineer

4.0 Register
Components &

Steps

SW Development Tools
Figure 97 Use Case 4.0: Register Components and Steps to External Tool Artifacts and

Activities

 278

This use case is further decomposed into three subordinate use cases as follows:

4.1 Map Components to Tool Objects.
4.2 Map Steps to Tool Activities/Methods.
4.3 Insert Translators.

The result of this set of use cases is that CASES shows a graphic view of the components

and the tool objects to which they correspond. It also shows a graphic view of the steps

and the tool activities and methods to which they correspond and embeds OOMI

translators into middleware so that appropriate interoperability translation can take place.

1. Use Case 4.1: Map Components to Tool Objects
In this use case the user imports a Comma Separated Value (CSV) file into

CASES. This CSV file contains lists of data associated with real artifacts produced in

other tools. The Actor-System response for this use case is described in Table 68.

Actor System
1 After selecting the "select" button on

the Project Schema tool bar, the user
right clicks on an established step.

The system offers the user an extended
menu as follows:
• Properties
• Decompose
• Delete
• QFD
• Import CSV File

2 The user selects "Import CSV File" The system responds with a file
browser pointed at the current directory

3 The user browses to the desired CSV
file and selects the one he wishes to
map against that particular set of
components

The system loads the CSV file into
component directory.

Table 68 Actor-System Responses for Use Case 4.1

Use Case 4.1 has been implemented in CASESv2.0. However, once Use Cases 4.2 and

4.3 are implemented (in future versions of CASES), this use case should be re-written to

take advantage of the middleware mechanism being used.

2. Use Case 4.2: Map Steps to Tool Activities/Methods
In this use case, the user identifies actual method calls between tools so that as

artifacts are created, CASES con monitor that creation and automatically and

dynamically update the list and values of components (artifacts). This use case has not

been implemented in CASESv2.0.

 279

3. Use Case 4.3: Insert Translators
In this use case, the user automatically inserts the OOMI IDE supplied translators

into the CASES middleware ORB and registers them against external tool objects

identified in other tool ORBs. This use case has not been implemented in CASESv2.0.

G. USE CASE 5.0: CASES THROUGH MIDDLEWARE MECHANISM

COLLECTS/TRACKS ARTIFACTS AND ACTIVITIES
CASES monitors and tracks the creation, modification, and deletion of artifacts

throughout the software development life cycle. Artifacts and dependencies are

automatically updated. Figure 98 illustrates this use case and Table 69 describes the

Actor-System responses.

SW Engineer SW Development Tools

5.0 Track Artifacts
& Activities

Figure 98 Use Case 5.0: Register

Actor System
1 Through CASES, user launches

Software Development tool (e.g.
Word, ReqPro, CAPS, etc.)

The tool opens.

2 The user uses the tool. The tool (through the middleware)
publishes changes to created artifacts.

The system (CASES) tracks the
changes to created artifacts.

The system (CASES) translates
appropriate artifacts and passes them to
other launched tools.

Table 69 Actor-System Responses for Use Case 5.0

This use case, although defined, is not implemented in CASESv2.0. As of now, all

tracking is done through the importing of static data files (i.e. .csv files). The files can be

created as often as a user desires, but the process is not yet dynamic.

 280

H. USE CASE 6.0: SELECT VIEWS OF ARTIFACT DEPENDENCIES
In this particular use case the software engineer can define particular views of

artifact dependencies. In essence the engineer is taking a "slice" of the underlying

hypergraph representation of the software development effort. This slice is tailored to the

specific set of artifacts and dependencies that the user specifies. Figure 99 below

illustrates the use case.

SW Engineer

6.0 Select views

Figure 99 Use Case 6.0: Select Views of Artifact Dependencies

This use case is further decomposed into subordinate use cases as follows:

6.1 Software Engineer selects a view based on single dependency link (e.g. R S,
thus you get the house or roof of the QFD matrix).

6.2 Software Engineer selects a view based on single component (e.g. S1.2 entire
induced subgraph backed out from S1.2).

6.3 Software Engineer selects a view based on a threshold dependency value for a
particular type of dependency (e.g. Risk threshold ≥ mean + 1 standard
deviation entire induced subgraph where risk ≥µ σ+)

The results of this use case will provide the software engineer three different means of

obtaining decision support information about the software development effort

1. Software Engineer Selects a View Based on Single Dependency Link
(2 Scenarios)

In this use case the engineer can view the QFD matrix (either "house" or "roof")

for any set of components. Table 70 describes the Actor-System responses for viewing

the QFD "house" for two different types of components and Table 71 describes the

Actor-System responses for viewing the QFD "roof" for the same type of components.

 281

Actor System
1 After selecting the "select" button on

the Project Schema tool bar, the user
right clicks on an established step.

The system offers the user an extended
menu as follows:
• Properties
• Decompose
• Delete
• QFD
• Import CSV File

2 The user selects "QFD" and further
selects the particular dependency that
he wants to view.

 The system produces a QFD matrix
rectangular matrix.

Inside the matrix are correlations
between the two components and
values of the dependencies as follows:
 Spec1 Spec2 Spec3
 1.57 5.52 2.89
Req1 1 0 0 9
Req2 3 0 3 0
Req3 4 0 3 0
Req4 2 3 0 1

Table 70 Actor-System Responses for Use Case 6.1 (Scenario 1)

 282

Actor System
1 After selecting the "select" button on

the Project Schema tool bar, the user
right clicks on an established
component.

The system offers the user an extended
menu as follows:
• Properties
• Decompose
• Delete
• QFD
• Import CSV File

2 The user selects "QFD" and further
selects the particular dependency that
he wants to view.

 The system produces a QFD matrix
rectangular matrix.

Inside the matrix are correlations
between the same components. The
value of the dependency is displayed.
A color (e.g. red) is used to indicate
un-needed correlations between the
same set of components as follows:
 Req1 Req2 Req3
 1 4 3
Req1 1 0 1 3
Req2 4 0 0 0
Req3 3 0 0 0

Table 71 Actor-System Responses for Use Case 6.1 (Scenario 2)

Both scenarios of Use Case 6.1 have been implemented in CASESv2.0.

2. Use Case 6.2: Software Engineer Selects a View Based on Single
Component

In this use case the user identifies a particular component and threshold

correlation value (e.g. S1.2 threshold 2 entire induced subgraph backed out from S1.2

where correlations ≥ 2). The system then identifies and displays all connected

components with correlation values greater than that threshold. Table 72 describes the

Actor-System responses.

 283

Table 72 Actor-System Responses for Use Case 6.2

Use Case 6.2 has been implemented in CASESv2.0.

3. Use Case 6.3: Software Engineer Selects a View Based on a Threshold
Dependency Value for a Particular Type of Dependency

In this use case the user identifies a particular type of dependency and a threshold

value. The system then displays all components with dependency values greater or equal

to than (or less than or equal to) that threshold value (e.g. Risk threshold ≥ mean + 1

standard deviation entire induced subgraph where risk ≥µ σ+). Table 73 describes

the Actor-System responses for this use case.

Actor System
1 With a QFD matrix open, the user

selects "Trace" from the dialog
"View" menu.

The system responds by providing a
"Trace" dialog

2 The user selects the component to be
traced from and the threshold
correlation value

The system responds by providing
"culled" QFD matrices related to each
step that show only those connected
components with correlation values
greater than the threshold.

These components represent a "slice"
of the underlying hypergraph that are
connected to the selected component
with a correlation greater than the
selected threshold.

 284

Actor System
1 With a QFD matrix open to a

particular type of dependency, the user
selects "User-Defined" from the dialog
"View" menu.

The system responds by providing a
"User-Defined" dialog

2 The user selects the amount of the
standard deviation (from the mean)
and whether he is interested in the
values "greater than or equal to" or
"less than or equal to" that threshold

The system responds by providing a
"culled" QFD matrix that shows only
those components with a dependency
value that satisfies the threshold
criteria.

These components represent a "slice"
of the underlying hypergraph that meet
the user's threshold criteria.

Table 73 Actor-System Responses for Use Case 6.3

Use Case 6.3 has been implemented in CASESv2.0.

 285

APPENDIX B: CARA INFUSION PUMP REQUIREMENTS FROM
REQUISITE PRO

A. INTRODUCTION
Section B of this appendix provides a listing of the requirements of the CARA

Infusion Pump [WRAI02a] specified within Requisite®Pro. The requirement numbers

and descriptions (Feature Tag and Requirement Text) come directly from [WRAI02c]1;

the requirement names were derived from the general description of the requirement.

The values for AHP Priority, Requirements Clarity, and Safety were artificially derived

and created as user defined Requisite®Pro requirements attributes in order to provide

meaningful data for the software experiment delineated in this dissertation. “AHP

Priority” values are requirement priority values calculated using the Analytic Hierarchy

Process [SAAT80] and then multiplied by 500 (AHP values typically sum to 1).

Requirements clarity values are integer values based on the number and applicability of

questions posed by developers about individual requirements; the higher the value, the

less clear is the requirement (i.e. a high value indicates that a number of clarifying

questions had to be asked about a particular requirement). Safety values are assigned on

a 1 to 5 scale with 1 being low safety impact to the design and 5 being high safety impact

to the design.

B. CARA REQUIREMENTS SPECIFIED IN REQUISITE®PRO

FEAT Tag Name Requirement Text AHP
Priority

Rqts
Clarity

Safety

FEAT1 CARA On The CARA will be operational
whenever the LSTAT is
powered on.

1.169 3 1

1 Reprinted with permission of the Walter Reed Army Institute of Research, Dr. Stephen A. Van

Albert, May 2003.

 286

FEAT Tag Name Requirement Text AHP
Priority

Rqts
Clarity

Safety

FEAT2 Pump Status
Display

The display will show a
message indicating the current
status of the pump. One of the
following indications will
appear:

1.403 0 2

FEAT2.1 Not Plugged
In

The pump is not plugged in 1.123 0 2

FEAT2.2 Plugged In
Status
Unknown

The pump is plugged in and its
operational status is unknown

1.123 0 2

FEAT2.3 Plugged In
Manual Mode

The pump is plugged in and is
running in manual mode

1.123 0 2

FEAT2.4 Plugged In
but Stopped

The pump is plugged in and is
stopped

1.123 0 2

FEAT2.5 Plugged In
Auto-Control
Mode

The pump is plugged in and is
operating in auto-control mode

1.123 0 2

FEAT3 Monitor
Pump

CARA will monitor the pump
connector on the LSTAT to
determine when a pump is
plugged in

7.016 9 2

FEAT4 Pump
Detected Msg
Display

When the pump is detected an
appropriate message will be
displayed.

7.016 0 2

FEAT5 Pump
Detected
Timestamp

When the pump is detected a
timestamp will be entered into
a resuscitation file.

7.016 0 3

FEAT6 Continuity
Check

Upon connection CARA will
continuously check continuity
on all wires going to the pump.

1.403 13 2

FEAT6.1 Discontinuity
Message
Display

If a discontinuity is detected
on any lines, CARA will
display appropriate messages.

1.403 7 2

FEAT6.2 Discontinuity
Alarm

If a discontinuity is detected
on any lines, CARA will issue
appropriate alarms.

1.754 7 4

FEAT6.3 Discontinuity
Terminate AC

If a discontinuity is detected
while in auto-control, CARA
will terminate auto-control

2.456 16 5

FEAT7 Occlusion
Line
Monitoring

The CARA will monitor the
occlusion lines whenever the
pump is plugged in.

1.052 0 3

 287

FEAT Tag Name Requirement Text AHP
Priority

Rqts
Clarity

Safety

FEAT7.1 Occlusion
Detected

If an occlusion fault is
detected

1.052 0 3

FEAT7.1.1 Occlusion
Display Msg

An appropriate error message
should is issued.

1.052 0 2

FEAT7.1.2 Occlusion
Level 1
Alarm

A level 1 alarm should is
issued

1.754 3 4

FEAT7.1.3 Occlusion
Terminate AC

If an occlusion is detected
while in auto-control, CARA
will terminate auto-control

2.105 9 5

FEAT8 Air OK
Monitoring

The CARA will monitor the
Air OK line whenever the
pump is plugged in.

1.403 12 2

FEAT8.1 Air OK
Remains Low

If the Air OK signal remains
low for 10 seconds

1.052 4 3

FEAT8.1.1 AirOK Msg
Display

An appropriate error message
should is issued.

1.052 4 2

FEAT8.1.2 AirOK Level
1 Alarm

A level 1 alarm should is
issued

1.403 7 4

FEAT8.1.3 AirOK
Terminate AC

If an air fault is detected while
in auto-control, CARA will
terminate auto-control

2.105 13 5

FEAT9 EMF
Monitoring

CARA should monitor the
back EMF line from the pump
to keep track of infused fluids
by polling immediately when
the pump is plugged in and
then on every even 5-second
clock interval while the pump
remains plugged in.

2.339 19 2

FEAT10 Back EMF
Detected in
Manual Mode

If back EMF is detected in
manual mode the volume
infused should be calculated
(Manual mode is defined as
the time when the pump is
connected to the LSTAT and
is infusing fluid into a patient
using the hardware flow
setting on the pump.)

2.806 0 2

 288

FEAT Tag Name Requirement Text AHP
Priority

Rqts
Clarity

Safety

FEAT10.1 Log
Cumulative
Volume

The cumulative volume
infused from the time of
CARA initialization should be
logged into the resuscitation
file with the time every minute
on the minute while the pump
is plugged in.

2.806 24 3

FEAT10.2 Graph Trend
Cumulative
Volume

The volume infused should be
trended on a graphical display
every minute

1.403 9 2

FEAT11 Calculate
Flow Rate

The flow rate should be
calculated from the back EMF
on every

1.169 9 2

FEAT11.1 Display Flow
Rate

The flow rate should be
displayed continuously with
the display being updated with
every new reading.

2.689 3 2

FEAT11.1.1 EMF
Unobtained
Flow Rate
Unknown

If the EMF reading cannot be
obtained, the display should
indicate that the flow rate is
unknown.

2.222 12 2

FEAT11.2 Flow Rate
Logged

The average flow rate for the
past minute should be written
to the resuscitation file once
per minute on the minute
while the pump is plugged in.

2.339 13 3

FEAT11.2.1 Unknown
Flow Rate
Logged

If the EMF reading cannot be
obtained the log entry should
indicate that the average flow
rate is unknown for the
minute.

1.637 16 3

FEAT11.2.2 EMF
Unobtained or
Zero,
Terminate AC

If the EMF reading cannot be
obtained or is zero while in
autocontrol, CARA will
terminate auto-control

1.637 16 5

FEAT12 EMF Present,
Log Manual
Mode

If back EMF is present, the
fact that the pump is in manual
mode should also be recorded
in the resuscitation file

2.806 0 3

FEAT12.1 Display
Manual Mode

The fact that the pump is in
manual mode should also be
shown on the display.

1.871 0 2

 289

FEAT Tag Name Requirement Text AHP
Priority

Rqts
Clarity

Safety

FEAT13 BPs Various
Sources

The CARA should be able to
use a blood pressure from
various sources as the input
into the CARA algorithm.
Blood pressure sources
(arterial line, cuff, other
noninvasive pressures [pulse
wave transmission, etc.]) will
be prioritized based on quality.

1.169 3 3

FEAT13.1 Corroborated
A-line
Priority 1

A corroborated A-line is use
priority 1

4.677 9 3

FEAT13.2 Corroborated
Pulse Wave
Priority 2

A corroborated pulse wave
pressure is use priority 2

3.508 9 2

FEAT13.3 Cuff Pressure
Priority 3

A cuff pressure is use priority
3

2.339 9 1

FEAT14 Manual
Model Log
BP

If the CARA detects a blood
pressure during manual mode,
it should log the pressure (both
systolic and diastolic values)
to the resuscitation file every
minute on the minute,
coincident with any other
logging that is occurring on
the minute.

2.339 0 2

FEAT14.1 Avg BP
Logged

If the source reports the blood
pressure more than once a
minute, an average over the
minute should be stored into
the resuscitation file.

2.572 0 2

FEAT14.1.1 BP Source
Logged

Along with the blood pressure,
the source of the BP should be
recorded into the resuscitation
file

1.871 0 2

FEAT14.1.2 BP Time
Logged

The time of the BP should be
recorded into the resuscitation
file.

2.572 0 2

FEAT14.1.3 BP Display
w/ Infused
Volume

The blood pressure that is
stored to file should also be
graphed on the same display as
the infused volume

1.169 9 2

 290

FEAT Tag Name Requirement Text AHP
Priority

Rqts
Clarity

Safety

FEAT14.1.4 BP Value on
Display

The numerical value of the
blood pressure should be
displayed as well.

1.169 0 2

FEAT15 Respond to
Lost BP
Sources

During resuscitation CARA
should respond to any lost
blood pressure sources

2.105 27 4

FEAT15.1 Display Msg,
Lost BP
Source

With an appropriate message 3.508 3 2

FEAT15.2 Level 1
Alarm, Lost
BP Source

With a level 1 alarm 4.911 18 4

FEAT15.3 Logged, Lost
BP Source

With a notation in the
resuscitation file

3.508 3 3

FEAT16 CARA Ready
for AC

When CARA determines that
1) a pump is plugged in and
not stopped, 2) an infusate
with an impedance within
tolerance is in place, and 3) the
occlusion line is clear,

0.327 0 2

FEAT16.1 Display AC
Ready

The display will show a
"CARA Status OK" message
indicating that CARA is ready
to start auto-control and a Start
Auto-control button.

1.473 0 2

FEAT16.2 Display Mean
BP

The display will also show the
default mean blood pressure of
70 mmHg to which CARA
will titrate.

1.473 0 2

FEAT16.3 Set Point
Button

The user will have the ability
to increase or decrease the set
point by pressing a "change set
point" button.

2.292 0 2

FEAT16.4 Change Set
Point Dialog

Pressing the "change set point"
button will display a change
set point dialog with five
buttons: "up", "down", and
"OK" "Cancel" and "Default".

2.292 0 2

 291

FEAT Tag Name Requirement Text AHP
Priority

Rqts
Clarity

Safety

FEAT16.5 Change Set
Point

Once the "change set point"
dialog is active, the proposed
set point will be displayed
within the dialog box and can
be increased or decreased by
pushing an "up" or a "down"
button.

0.655 3 2

FEAT16.5.1 Set Point
Increment

Each press will change the set
point by 5 mmHg.

0.655 1 2

FEAT16.5.2 Set Point
Limits

The set point will have limits
of 60 - 120 mmHg.

0.655 1 2

FEAT16.5.3 Set Point OK
button

Pressing the OK button will
activate the set point and close
the dialog and display the set
point button

0.982 9 2

FEAT16.5.4 Log Set Point
Change

When a set-point change is
activated the change will be
recorded to the log file.

0.655 1 2

FEAT16.5.5 Set Point
Cancel Button

Pressing the Cancel button will
close the dialog box and leave
the set point unchanged.

0.327 1 2

FEAT16.5.6 Set Point
Default
Button

Pressing the Default button
returns the proposed set point
to the default in the dialog
box.

0.982 1 2

FEAT16.6 Set Point
Changes
Anytime

The set point can be changed
at any time during
resuscitation.

2.292 0 2

 292

FEAT Tag Name Requirement Text AHP
Priority

Rqts
Clarity

Safety

FEAT16.7 Set Point
Dialog
Visabilty

The change set point button
and change set point dialog
box will not be available when
any other dialog box is open
(TAC or Override). If the set
point button or dialog is
removed because another
higher priority dialog box was
displayed, it will be displayed
and made available again
when the higher priority dialog
boxes have been closed.
However, if auto control is
terminated while the set point
dialog is "hidden", it will not
be redisplayed.

1.31 18 2

FEAT17 AC Button
Selected

If the 'Start Auto-control'
button is selected,

1.403 0 4

FEAT17.1 AC Initial
Flow Rate

The CARA will initialize the
pump at a default flow rate of
4 l/hr.

3.274 0 4

FEAT17.2 AC Inflate
Cuff

Upon entering auto-control
mode CARA will inflate the
blood pressure cuff.

1.637 9 3

FEAT17.3 AC Cuff Not
Available

If cuff pressures are not
available

0.702 0 3

FEAT17.3.1 AC Cuff Not
Avail Msg

An appropriate message
should be displayed.

0.935 0 2

FEAT17.3.2 AC Cuff Not
Avail Level 1
Alarm

A level 1 alarm is issued 0.935 3 4

FEAT17.3.3 AC Cuff Not
Avail
Override
Buttons

An override "yes" button and
an override "no" button will
then be displayed.

0.935 4 2

FEAT17.3.3.1 AC Cuff Not
Avail
Override Yes
Button

Pressing the override "yes"
button will force the CARA to
use the top priority (req. 13)
uncorroborated pressure
source for control.

0.702 4 3

 293

FEAT Tag Name Requirement Text AHP
Priority

Rqts
Clarity

Safety

FEAT17.3.3.1.1 AC Cuff Not
Avail
Override No
Button

Pressing the "no" button will
return to manual mode.

0.702 7 3

FEAT17.3.3.2 AC Cuff Not
Avail
Override
Logged

A notation should be entered
in the resuscitation file as to
the button pushed.

1.403 1 3

FEAT17.3.4 AC Cuff Not
Avail Alarm
Reset

Pressing the alarm reset button
will remove the audible and
visual alarm and reattempt to
inflate the cuff

0.935 9 4

FEAT17.4 AC Initiating
Logged

A notation should be made in
the resuscitation file, 'initiating
auto-control'

1.637 9 3

FEAT17.5 AC Initiating
Displayed

A notation should be made to
the display, 'initiating auto-
control'

1.403 12 2

FEAT17.6 No Available
BPs Revert to
Manual Mode

If cuff pressure is not available
and there are no other blood
pressures sources available
CARA should revert to manual
mode

3.508 3 5

FEAT17.6.1 No Available
BPs Revert to
Manual Mode
Display

An appropriate message
should be displayed.

1.637 0 2

FEAT17.6.2 No Available
BPs Revert to
Manual Mode
Alarm and
Log

A level 1 alarm is issued
(logged to file and displayed)

1.637 3 4

FEAT18 Valid BP
Range

Mean pressure readings from
the Propaq must be within 40 -
150 mmHg to be valid
throughout resuscitation.

7.016 33 2

FEAT19 No Propaq
Data Stream

If the CARA does not receive
the data stream from the
Propaq

1.403 9 2

FEAT19.1 No Propaq
Data Stream
Display

An appropriate message
should be displayed.

1.403 0 2

 294

FEAT Tag Name Requirement Text AHP
Priority

Rqts
Clarity

Safety

FEAT19.2 No Propaq
Data Stream
Level 2
Alarm

A level 2 alarm should be
issued

1.871 3 3

FEAT20 BP
Corroboration
Begins

Once the 'Start Auto-control'
button has been pressed, BP
source corroboration begins in
the order of source priority
(req. 13), if a cuff pressure is
available

0.935 3 3

FEAT20.1 BP
Corroboration
Source
Control

A source control pressure will
be compared to a
corresponding cuff pressure

1.684 0 3

FEAT20.2 BP
Corroboration
Source
Control
Within 10%

If the source pressure is with
in 10% of the corresponding
cuff pressure the source in
corroborated and will be used
for control

1.684 0 3

FEAT20.3 BP
Corroboration
Source
Control Not
Within 10%

If the source pressure is not
with in 10% of the
corresponding cuff pressure,
two more cuff readings will be
taken and compared to
corresponding source readings

0.561 0 3

FEAT20.3.1 BP
Corroborated

If both source pressure
readings are within 10% of the
corresponding cuff readings,
the source is corroborated and
will be used for control

0.561 0 3

FEAT20.3.2 BP
Corroboration
Failure
Dialog

If both source pressure
readings are not within 10% of
the corresponding cuff
readings, an override dialog
box will be displayed and the
corroboration failure will be
logged.

0.561 9 2

FEAT20.3.2.1 BP
Corroboration
Failure
Dialog Yes
Button

If the override "YES" button is
pressed, the uncorroborated
source will be used for control

0.561 0 2

 295

FEAT Tag Name Requirement Text AHP
Priority

Rqts
Clarity

Safety

FEAT20.3.2.2 BP
Corroboration
Failure
Dialog No
Button

If the override "NO" button is
pressed, CARA will attempt to
corroborate the next priority
source (req. 13) based on
readings already collected

0.561 0 2

FEAT20.3.2.2.1 BP
Corroboration
Failure Cuff
for Control

If no other source is available,
CARA will use the cuff
pressure for control.

0.748 0 2

FEAT20.3.2.2.2 BP
Corroboration
Failure
Additional
Attempts

Uncorroborated blood
pressures sources will be
compared to each cuff reading.
If the readings are within 10%
the CARA will automatically
switch over to the new source.
Override dialog boxes will not
be displayed for these
subsequent corroboration
attempts.

0.748 9 2

FEAT20.4 BP
Corroboration
Cuff for
Control

During source corroboration,
CARA will use the cuff
pressure for control

1.123 3 3

FEAT20.5 Display
Control
Source

CARA should display the
blood pressure control source
(e.g. Arterial Line, Pulse
Wave, Cuff, etc.)

1.123 3 2

FEAT20.6 Log Control
Source

CARA will log the blood
pressure control source to the
log file

0.935 0 3

FEAT20.7 Re-
corroborate
Interval

CARA will re-corroborate the
blood pressure control source
with the cuff every 30 minutes.

0.935 24 2

FEAT20.7.1 Re-
corroborate
Wait
Condition

Any active corroboration
attempt must be completed
before the periodic 30-minute
re-corroboration can begin.

0.935 24 2

FEAT20.7.2 No Cuff for
Re-calibration

If the cuff pressure is not
available for re-calibration,

0.748 4 2

FEAT20.7.2.1 No Cuff for
Re-calibration
Display

An appropriate message
should be displayed

0.748 2 2

 296

FEAT Tag Name Requirement Text AHP
Priority

Rqts
Clarity

Safety

FEAT20.7.2.2 No Cuff for
Re-calibration
Level 1
Alarm

A level-1 alarm should be
issued

0.748 2 4

FEAT20.8 Higher BP
Source
Available

If a higher priority blood
pressure source than the one
that CARA is using becomes
available, CARA should
corroborate the higher priority
blood pressure source using
the current blood pressure
source.

1.684 12 3

FEAT20.8.1 Higher BP
Source
Available
Deconfliction

If a source is in the process of
being corroborated, or an
override question is pending
and a new higher priority
source begins reporting,
corroboration of the new
higher priority source cannot
begin until the current
corroboration process
complete or the override
question is answered.

1.123 18 2

FEAT21 Deleted Rqt Deleted Rqt 0 0 0
FEAT22 Deleted Rqt Deleted Rqt 0 9 0
FEAT23 A-Line Not

Available
If an arterial line is not
available then other blood
pressure sources should be
used.

7.016 9 3

FEAT24 Pulse Wave
Available

If the pulse wave signal is
detected,

0.935 2 3

FEAT24.1 Pulse Wave
Calibration

CARA should immediately
begin to calibrate the pulse
wave using an average of 3
cuff pressures taken one
minute apart. It is expected
that a valid pulse wave
pressure reading will be
available every 15 seconds for
control purposes. To be used,
the pulse wave must be
calibrated using the cuff
pressure.

1.754 5 3

 297

FEAT Tag Name Requirement Text AHP
Priority

Rqts
Clarity

Safety

FEAT24.2 Pulse Wave
Re-calibration
Interval

The pulse wave should be re-
calibrated every 15 minutes
using the average of two cuff
pressures taken one minute
apart.

1.403 2 3

FEAT24.3 Pulse Wave
Re-calibration
w/ No Cuff

If the cuff pressure is not
available for re-calibration,

1.403 2 3

FEAT24.3.1 Pulse Wave
Re-calibration
w/ No Cuff
Display

An appropriate message
should be displayed.

0.935 2 2

FEAT24.3.2 Pulse Wave
Re-calibration
w/ No Cuff
Level 1
Alarm

A level 1 alarm is issued 1.754 5 4

FEAT24.3.3 Use Last
Good Pulse
Wave

The CARA should continue
using the pulse wave with the
last good calibration.

1.754 2 3

FEAT25 Only Cuff to
be Used

If only a cuff pressure is to be
used the CARA should
immediately initiate 5 blood
pressure readings one minute
apart.

1.754 0 3

FEAT26 CARA Re-
adjust after
Each New BP

The CARA will readjust after
each blood pressure reading.

7.016 0 3

FEAT27 Cuff As
Control
Interval

When the cuff pressure is
being used for control, CARA
should set a cuff reading
frequency based on a table. In
general, blood pressures will
be taken more frequently while
below the set point. If the cuff
is already inflating for some
other reason when the time
arrives for another reading, an
additional cuff reading does
not need to be requested.

1.871 15 3

 298

FEAT Tag Name Requirement Text AHP
Priority

Rqts
Clarity

Safety

FEAT27.1 Cuff As
Control
Interval, BP
60 or Below

If the mean BP is 60 or below,
cuff pressures will be taken
once per minute.

1.871 10 3

FEAT27.2 Cuff As
Control
Interval, BP
(60-70]

If the mean BP is (60 - 70],
cuff pressures will be taken
once every 2 minutes.

1.871 10 3

FEAT27.3 Cuff As
Control
Interval, BP
(70-90]

If the mean BP is (70 - 90],
cuff pressures will be taken
once every 5 minutes.

1.871 10 3

FEAT27.4 Cuff As
Control
Interval, BP
Above 90

If the mean BP is above 90,
cuff pressures will be taken
once every 10 minutes.

1.871 10 3

FEAT28 No Valid BP
in 3 Minutes,
Revert to
Manual Mode

If CARA can not obtain a
valid blood pressure in 3
minutes, it should revert back
to manual mode.

3.742 6 4

FEAT28.1 No Valid BP
in 3 Minutes,
Revert to
Manual Mode
Display

An appropriate message
should be displayed

2.806 1 2

FEAT28.2 No Valid BP
in 3 Minutes,
Revert to
Manual Mode
Level 2
Alarm

A level 2 alarm should be
issued.

2.806 3 3

FEAT29 Calculate
Pump Voltage

Once a valid blood pressure
has been established the
CARA should calculate a
voltage to drive the pump.

7.016 0 5

FEAT29.1 Display AC
Mode

A notation indicating that the
system is in auto-control mode
should be made on the display

1.403 0 2

FEAT29.2 Log AC
Mode

A notation indicating that the
system is in auto-control mode
should be made in the
resuscitation file.

2.806 0 3

 299

FEAT Tag Name Requirement Text AHP
Priority

Rqts
Clarity

Safety

FEAT29.3 Display BP
Set Point for
AC Mode

Also, a horizontal line
indicating the blood pressure
set point should be shown on
the graphical display.

2.806 0 2

FEAT30 New Voltage
Interval

When using an arterial line,
pulse wave or other beat-to-
beat blood pressure a new
voltage should be calculated
every 15 seconds by the
CARA.

7.016 0 4

FEAT30.1 New Voltage
Interval for
Cuff

When using the cuff pressure a
new control voltage should be
established after every blood
pressure reading.

7.016 0 3

FEAT31 Minimum
Flow Rate

The CARA will always
maintain at least a KVO flow
rate.

14.032 9 5

FEAT32 BP Source
Change
Monitoring

CARA will always monitor for
blood pressure source changes

2.339 0 3

FEAT32.1 Corroborate
Higher
Priority
Source

If the new source is a higher
priority source than the current
control source (req. 13) the
new source will be
corroborated (req. 20)

2.923 0 3

FEAT32.1.1 Use New
Corroborated
Source

If the new source is
corroborated, CARA should
change to use the new source
for control

4.093 0 3

FEAT32.1.2 Not
Corroborated
Override
Dialog

If the new source is not
corroborated, an override
dialog should be displayed to
give an opportunity to change
to the uncorroborated higher
priority source, as described in
req. 20. An override alert is
issued at this time also (an
alarm).

2.339 0 3

FEAT33 Deleted Rqt Deleted Rqt 0 9 0
FEAT34 Terminate AC

Button
Availability

When the CARA is in auto-
control mode a 'Terminate
Autocontrol' button should be
made available.

16.37 9 5

 300

FEAT Tag Name Requirement Text AHP
Priority

Rqts
Clarity

Safety

FEAT35 Deleted Rqt Deleted Rqt 0 9 0
FEAT36 Deleted Rqt Deleted Rqt 0 9 0
FEAT37 Deleted Rqt Deleted Rqt 0 9 0
FEAT38 Deleted Rqt Deleted Rqt 0 15 0
FEAT39 Falling BP

Monitoring
CARA should monitor for
falling blood pressure

4.677 33 4

FEAT39.1 Falling BP
Display

An appropriate message
should be displayed

3.508 10 2

FEAT39.2 Falling BP
Level 2
Alarm

A level 2 alarm should be
issued.

3.508 13 3

FEAT40 Deleted Rqt Deleted Rqt 0 12 0
FEAT41 Deleted Rqt Deleted Rqt 0 18 0
FEAT42 Lost BP in

AC Mode
While in auto-control mode, if
a beat-to-beat blood pressure
signal is lost for more than 1
minute

2.339 0 4

FEAT42.1 Lost BP in
AC Mode
Display

An appropriate message
should be displayed

2.339 0 2

FEAT42.2 Lost BP in
AC Mode
Level 1
Alarm

A level-1 alarm should sound 2.806 0 4

FEAT42.3 Lost BP in
AC Mode
Graphical
Display
Notation

Notation should be made on
the graphical display.

1.871 0 2

FEAT43 Beat-to-Beat
Signal Loss

If the beat-to-beat signal is lost
for more than 3 minutes

1.871 3 4

FEAT43.1 Beat-to-Beat
Signal Loss
Display

An appropriate message
should be displayed

0.935 1 2

FEAT43.2 Beat-to-Beat
Signal Loss
Level 2
Alarm

A level 2 alarm should sound 1.871 4 3

FEAT43.3 Beat-to-Beat
Signal Loss
Drive Voltage
Setting

The drive voltage should be
set to the last good blood
pressure

2.806 1 5

 301

FEAT Tag Name Requirement Text AHP
Priority

Rqts
Clarity

Safety

FEAT43.4 Beat-to-Beat
Signal Loss
Revert to
Secondary BP
Source

CARA should then revert to
using secondary blood
pressure sources using
appropriate quality control
procedures.

2.806 3 3

FEAT44 Cuff BP
Invalid
Reading

If only the cuff pressure is
being used and an expected
blood pressure reading is
invalid

1.169 9 3

FEAT44.1 Cuff BP
Invalid
Reading
Display

An appropriate message
should be displayed

1.169 3 2

FEAT44.2 Cuff BP
Invalid
Reading
Level 1
Alarm

A level-1 alarm should sound 2.105 3 4

FEAT44.3 Initiate New
Cuff BP
Reading

CARA should then initiate
another request for a cuff
pressure.

1.169 3 3

FEAT44.3.1 If New Cuff
BP Invalid

If this pressure is invalid, 0.585 3 3

FEAT44.3.1.1 If New Cuff
BP Invalid
Display

An appropriate message
should be displayed

1.169 3 2

FEAT44.3.1.2 If New Cuff
BP Invalid
Level 2
Alarm

A level-2 alarm should sound 1.403 3 3

FEAT44.3.1.3 If New Cuff
BP Invalid
Revert to
Manual Mode

The system will revert to
manual mode

1.52 12 5

FEAT44.4 Log Cuff BP
Invalid

Notations should be made to
the resuscitation file

1.403 3 3

FEAT45 Alarm
Description

Alarms consist of an audible
alarm and a visual alarm
message. When an alarm
becomes active, the audible
alarm sounds and the alarm
message is placed on the
display.

0.655 3 4

 302

FEAT Tag Name Requirement Text AHP
Priority

Rqts
Clarity

Safety

FEAT45.1 Alarm Msg
Priority

Alarm messages will be listed
according to alarm priority as
described in the alarm table.

1.146 10 4

FEAT45.1.1 Alarm
Message
Description

The alarm messages should be
in the form of directions to the
caregiver on how to fix the
problem. If multiple options
are available to fix the
problem, then all fixes should
be listed in priority in a single
message on the display.

1.637 10 3

FEAT45.2 Active
Alarms When
Pump Un-
plugged

If the pump is unplugged
while any alarms are active,
the active alarms should be
automatically reset. Only the
pump-unplugged alarm will
remain or become active if
appropriate.

1.473 4 3

FEAT45.3 Alarm Reset
When
Condition
Resolved

Alarms will automatically be
reset and the alarm message
will be removed if CARA
detects that the alarm
condition has been resolved.

1.473 4 3

FEAT45.4 Alarm
Buttons

Two "soft" buttons will appear
whenever there is an alarm.
One button will allow
temporary silencing of the
alarm for a set period. The
other button will be an
"Acknowledge/reset " button.

0.819 5 3

FEAT45.4.1 Silence
Alarms button

Caregiver should have the
ability to silence the audio
alarm while fixing the problem
by pressing the "silence
alarms" button.

0.819 7 3

FEAT45.4.1.1 Silence
Alarms
Period

The alarm should be silenced
only for a period of time. Time
period depends on the nature
of the problem as described in
the alarm table.

1.146 7 4

 303

FEAT Tag Name Requirement Text AHP
Priority

Rqts
Clarity

Safety

FEAT45.4.1.2 Silence
Alarms
Display

The alarm message should
remain on the display when
the temporary silence button is
pushed.

1.146 13 4

FEAT45.4.1.3 Silence
Alarms Not
Resolved

If the alarm condition is not
fixed and time expires, then
the audible alarm should sound
again.

1.146 13 4

FEAT45.4.2 Alarm
Acknowledge
/Reset Button

Once the caregiver has
executed the desired fix, he
will push the
Acknowledge/Reset button
(this is necessary only for
conditions that must be polled
by the CARA system)

0.655 7 3

FEAT45.4.2.1 Fault Fixed
TS Timer
Disabled

If the fault is fixed, then the
alarm will be completely reset
and the temporary silence
"TS" timer will be disabled.

1.31 5 4

FEAT45.4.2.2 Fault Not
Fixed, Alarm
Repeat

If the fault is not fixed, the
audible alarm will
immediately sound and the
visual portion of the alarm will
continue and the message will
stay on the display. The
temporary alarm silence timer
will be removed.

1.31 31 4

FEAT45.5 No Permanent
Alarm Off
Function

There shall be no software
provision for turning the
alarms off permanently.

1.637 4 4

FEAT46 All Alarms
Logged

All alarms will be recorded in
the resuscitation file

3.742 0 3

FEAT46.1 All Alarms
Logged with
time

The time issued will be
recorded

2.806 0 3

FEAT46.2 All Alarm
Resets
Logged with
Time

The time reset will be recorded 2.806 0 3

FEAT47 Pump
Unplugged
Logged with
Timestamp

If the pump is unplugged an
entry should be made to the
log file with a timestamp.

1.403 12 3

 304

FEAT Tag Name Requirement Text AHP
Priority

Rqts
Clarity

Safety

FEAT47.1 When No
BackEMF

While there is no back EMF
detected

0.819 4 3

FEAT47.1.1 When No
BackEMF
Display

The system should display an
appropriate message.

1.403 4 2

FEAT47.2 When No
BackEMF
Detected

While back EMF is detected 0.819 4 2

FEAT47.2.1 When No
BackEMF
Detected
Display

A message on the display
should appear

1.988 4 2

FEAT47.2.2 When No
BackEMF
Detected
Level 1
Alarm

A level 1 alarm should be
issued

2.339 8 4

FEAT47.3 Pump
Unplugged
during AC

During auto-control mode, 0.585 12 3

FEAT47.3.1 Deleted Rqt Deleted Requirement 0 12 0
FEAT47.3.2 Deleted Rqt Deleted Requirement 0 12 0
FEAT47.3.3 Pump

Unplugged
during AC,
Terminate AC

CARA should exit auto-
control mode

2.339 13 5

FEAT48 Terminate AC
Selected

Whenever the 'Terminate auto-
control' button is selected the
auto-control termination
sequence begins.

1.286 3 5

FEAT48.1 Deleted Rqt Deleted Requirement 0 9 0
FEAT48.2 Terminate AC

Confirmation
Message

A confirmation message
indicating that control will be
released should be displayed in
a dialog box. This dialog box
will take priority over all other
open dialogs. Any other open
dialog boxes will be closed
when the Terminate Auto-
control dialog box is
displayed.

3.859 3 2

 305

FEAT Tag Name Requirement Text AHP
Priority

Rqts
Clarity

Safety

FEAT48.3 Terminate AC
Yes
Confirmation
Button

A confirmation yes button will
be displayed

2.572 0 3

FEAT48.3.1 Terminate AC
Yes
Confirmation
Button
Selected

Pressing this button will
relinquish flow control of the
pump. The pump will operate
at its hardware switch setting.

5.145 0 5

FEAT48.3.1.1 Terminate AC
Yes
Confirmation
Button
Selected
Display

A notation that the system is in
manual mode should be made
to the display

2.572 0 2

FEAT48.3.1.2 Terminate AC
Yes
Confirmation
Button
Selected
Logged

A notation that the system is in
manual mode should be made
to the resuscitation file.

5.145 0 3

FEAT48.4 Terminate AC
No
Confirmation
Button

A confirmation no button will
be displayed.

1.286 0 2

FEAT48.4.1 Terminate AC
No
Confirmation
Button
Selected

Pressing the this button will
return the system to Auto-
control, closing the Terminate
auto-control dialog box, and
re-opening the highest priority
pending dialog box, if any
exist.

1.286 0 3

FEAT48.5 Terminate AC
Confirmation
Dialog,
Change Set
Point Button

While the confirmation dialog
box is displayed, the Change
Set Point button should be
disabled if it is available, and
the Alarm rest button should
be disabled if it is available.

2.572 18 3

FEAT49 Action Button
Action

When an action button is
pressed the button should be
made unavailable (removed or
disabled).

7.016 9 2

 306

FEAT Tag Name Requirement Text AHP
Priority

Rqts
Clarity

Safety

FEAT50 Interrupt
Signals

Logic level input signals
(Pump connection, continuity,
Occlusion) will occur as an
interrupt signal when the state
of a signal changes.

7.016 0 2

FEAT51 Clock
Interrupts

A clock interrupt must trigger
certain events at even five-
second and 60-second clock
intervals after the pump is
plugged in.

2.105 6 2

FEAT51.1 5 Second
Clock
Interrupts

At the five-second interval the
sequence of events should be
to check EMF, display the
updated flow rate, and then
check impedance value.

2.806 9 2

FEAT51.2 60 Second
Clock
Interrupts

At the 60-second interval the
sequence of events should be
to check EMF, display the
updated flow rate, check the
impedance value, write the
flow rate, cumulative volume
infused and impedance value
to the log file.

2.806 9 2

FEAT52 Impedance
Polling
Sequence

The impedance will be polled
immediately after the EMF
when the pump is plugged in
and then on every even 5-
second interval while the
pump remains plugged in.

2.385 34 2

FEAT52.1 Impedance
Value Logged

The impedance value should
be logged once per minute on
the minute.

2.315 24 2

FEAT52.2 AirOK Fault,
Read
Impedance
and Log

If the Air OK fault occurs, the
impedance should be read
immediately (at the time of the
fault) and logged to the file.

2.315 39 3

 307

FEAT Tag Name Requirement Text AHP
Priority

Rqts
Clarity

Safety

FEAT53 Alarm
Priorities and
Silencing
Times

Alarm priorities and silencing
times table (Increment 1)
Pri Alarm Silence time
1 Pump unplugged
 during manual mode 2
2 Continuity fault 5
3 Air lock detected 2
4 Occlusion 2
TBD Polling failure inf
TBD Data log failure N/A

11.693 0 4

FEAT54 Polling
Request
Failure
Actions

If a polling request fails,
CARA should retry the request
at one second intervals until
successful for a maximum of
three readings.

2.105 18 3

FEAT54.1 Polling
Request
Failure
Retries and
Alarm

If the maximum number of
retry attempts is made with no
success, CARA should issue
an alarm and message stating
that a data acquisition failure
has occurred.

1.754 9 4

FEAT54.1.1 No
Impedance in
AC,
Terminate AC

If impedance reading cannot
be obtained while in auto-
control mode, CARA should
exit auto-control mode

3.157 15 5

FEAT55 Log File
Failure Alert
Display

If an attempt to write to the log
file fails, CARA should
display an alert message
indicating that a data logging
failure has occurred and
continue operating.

2.339 9 3

FEAT56 Pump Status
Changes
Timestamp

When the pump status
changes, an entry with a
timestamp should be made to
the log file to record the
change in status. These log
messages should correspond to
the display message in req. 2.
(This requirement is redundant
in some cases)

2.339 0 3

 308

FEAT Tag Name Requirement Text AHP
Priority

Rqts
Clarity

Safety

FEAT57 Pump Startup
condition

A1 - Assume the pump is not
in at startup (see Q62) and that
the system will issue an
interrupt when the status
changes.

4.677 0 2

FEAT58 Alarm Reset
Availability

A3 - Alarm reset buttons are
available only when an alarm
has been triggered (alarm
buttons are soft buttons) - (see
Q64)

2.339 0 4

FEAT59 AirOK and
Continuity
Startup States

A6 - Assume the occlusion,
Air-OK, and continuity status
are OK when the pump is
plugged in (see Q62) and that
the system will issue an
interrupt when the status
changes.

4.677 0 2

FEAT60 Polling
Request
Interruption

A15 - Polling requests and
event service should not be
interrupted. The event service
will complete before other
inputs are handled. (System
interrupts will still occur, but
input from them will be
queued into the CARA)

2.339 9 3

FEAT61 Flow Rate
Calculation
Sequence

A16 - flow rate is calculated
and displayed immediately
when the pump is plugged in
and the back EMF value has
been read

7.016 0 3

FEAT62 Data Logging
Failure
Additional
Attempts

A17 - If a data logging failure
occurs, data logging attempts
should continue as normal

2.339 0 3

FEAT63 Pump
Unplugged
During Active
Alarms

A18 - If the pump unplugged
during operation alarm is
active and the alarm reset
button is pressed, the alarm
will be cleared and rest if the
pump is still not present
(system will return to initial
state with no pump).

2.339 0 4

 309

FEAT Tag Name Requirement Text AHP
Priority

Rqts
Clarity

Safety

FEAT64 Polling
Failure and
Future
Polling
Attempts

A19 - If a polling failure
occurs, polling attempts will
continue as normal

2.339 0 3

FEAT65 Alarm Reset
and Polling
Device
Interaction

A20 - If an alarm reset button
is pressed and a polling device
was the source of an alarm,
CARA will immediately poll
the appropriate devices in
order by device or alarm
priority.

2.339 0 4

FEAT66 Logging
Sequence

A21 - Logging occurs as the
last action in an event service
generally. Alarms, however,
are logged immediately when
the alarm is issued if data
logging is available.

2.339 0 3

FEAT67 Alarm Silence
Disable
Button

A22 - If the alarm silence
button is pressed, the alarm
silence button will be disabled
until a new audible alarm is
active

2.339 0 4

FEAT68 Multiple
Alarm
Conditions
During an
Alarm Silence

A23 - If the current alarms are
silenced and a new alarm
condition occurs an audible
alarm will be issued for the
new alarm condition.

2.339 0 4

FEAT69 Polling
Failure and
Data Logging

A24 - If a polling failure
occurs data logging will
continue and note that the
polled value is unknown

2.339 0 3

FEAT70 Dialog Box
Priority

Only one dialog box can be
displayed at a time. If multiple
dialog boxes are pending, the
highest priority dialog will be
displayed.

1.169 9 2

FEAT70.1 Dialog Box
Priority Order

The dialog box priority is
(from high to low) Terminate
Auto-control Source Override
Change Set Point

1.169 9 2

 310

FEAT Tag Name Requirement Text AHP
Priority

Rqts
Clarity

Safety

FEAT70.2 Dialog Box
Priority
Display
Changes

If a dialog box is currently
displayed and the system
conditions change to require a
higher priority dialog box to
be displayed, the original
dialog box will be closed and
the higher priority dialog will
be displayed.

1.169 9 2

FEAT70.2.1 Dialog Box
Re-Display

When the higher priority
dialog box is closed, the lower
priority dialog box will be re-
displayed, unless Auto-control
is terminated.

1.169 9 2

 311

APPENDIX C: SEATOOLS CARA MODEL DESCRIPTIONS

A. INTRODUCTION
This appendix provides an overview of the SEATools model of the CARA

Infusion Pump software [WRAI01a, b, c]. This model was designed based on the

requirement set of the CARA listed in Appendix B. The interoperability between this

model and requirement set provide the confirming evidence for the dissertation

hypothesis.

B. VERSION 1

Version 1 (actually v0.1 in the SEATools directory) of the CARA model is a non-

working, abstract view of the overall architecture implemented in version 2 (v0.2). Its

only purpose is to give someone unfamiliar with the more detailed model in version 2 a

high level overview of the major constructs in the model architecture.

1. Parent Vertex: Puett_Liang_CARA
The overall system environment consists of four main components: The Patient,

the LSTAT stretcher, the Infusion_Pump, and the CARA Software System (see Figure 100

below). Later in version 2, the patient is removed from the model and the infusion pump

and LSTAT are modeled as external simulations. The major system flows in this vertex

includes the following: fluid from the pump to the patient, blood pressures (bps) from the

patient to the LSTAT (which then passes them on to the CARA), inputs from CARA to

the LSTAT and pump (LSTAT_commands and pump_commands), and finally sensor

readings from the LSTAT and pump to CARA (LSTAT_status and

pump_sensor_readings).

 312

Figure 100 Top Level CARA Model v1

2. Parent Vertex: CARA
This level of version 1 shows the three main modules of the design: a

Pump_Control_Module with a main function of resolving the blood pressure to use and

determining the appropriate flow rate for the pump, an IO_Module with a main function

of sending and receiving inputs to the CARA operator via the display, and the

Management_Module with main functions of monitoring the status of the pump, the lines,

and the system and for logging data into the resuscitation file (see Figure 101 below).

Figure 101 CARA Software Model v1

 313

3. Parent Vertex: Management_Module
Central to this module is a manual_mode_interlock that is the primary operator

responsible for returning the system to a manual mode in case of failure of any

component. Feeding this operator is data from the line_monitor that monitors the sensor

readings from the pump and LSTAT. Also feeding the manual_mode_interlock is a

processor_watchdog. This watchdog would be implemented on a separate processor

from the main processor handling the bulk of the operations and is responsible for

sensing any major processor failure and then alerting the operator (via the display). One

final element of the Management_Module is the Resuscitation_File where all information

about the changing state of the CARA system is recorded (see Figure 102 below).

Figure 102 Management Module v1

 314

4. Parent Vertex: Pump_Control_Module
This is the major safety critical module of the CARA. It is responsible for

resolving what blood pressure to use and for determining the correct input to the pump

when the system is in auto-control mode (see Figure 103 below). Because of the safety

critical nature of this module, we chose to implement this with Triple Modular

Redundancy (TMR). This specific safety architecture was not called for explicitly in the

requirement statement; however, the safety environment implicitly requires some form of

redundancy to ensure that the proper commands are sent to the pump. The TMR

architecture uses three concurrent modules performing similar functions and producing

similar output, but using different internal algorithms in their calculations. A voting

element is then responsible for determining which output to use.

Figure 103 Pump_Control Module v1

 315

5. Parent Vertex: IO_Module
This module handles the input and output to the CARA display for the benefit of

the CARA operator (see Figure 104 below). The alarm functions have been separated

from other display functions to help isolate the safety critical functions. Also note the

duplicate alarm_controller1 and 2. This additional alarm_controller would be

implemented on the second processor with the processor watchdog so that in case of

processor failure, alarms would be raised to the display.

Figure 104 IO_Module v1

B. VERSION 2
Version 2 (actually v0.2 within SEATools) is the working prototype that

implements a majority of the CARA requirements specified in Segment 3 of the CARA

Requirement Statement [WRAI01c]. This version is much more detailed than version 1

and is described in many more layers of decomposition. The "human" element (the

patient and CARA operator) has been removed from the model in this version. The

external interfaces to the system are modeled as simulators for the LSTAT, the Infusion

Pump, and the CARA Display.

 316

1. Parent Vertex: Puett_Liang_CARA
The overall system environment consists of just three main components: the

LSTAT stretcher is assumed to provide the majority of patient related information (e.g.

blood pressures), the Infusion_Pump is the main item for control, and the CARA Software

System is the system driving the infusion pump based on data received from the LSTAT

(see Figure 105 below). The major system flows in this vertex between the CARA and

LSTAT are the following: three different kinds of blood pressures (aline_bp,

pulse_wave_bp, cuff_bp), additional sensor data from the LSTAT (a signal that the

LSTAT is turned on (LSTAT_power_on) and the status of the pump

(pump_plugged_in_status)), and an output from CARA to the LSTAT (commands to

inflate the blood pressure cuff (inflate_cuff)). The major system flows between the

CARA and the Infusion Pump are the following: the pump_speed to the pump (a

voltage), from the pump several safety related data items (impedance,

continuity_disrupted, occlusion_detected, and air_disrupted), and from the pump the

back_EMF which is proportional to the actual rate at which the pump in infusing liquid.

Figure 105 CARA Software Model v2

 317

2. Parent Vertex: Infusion_Pump
This level shows the decomposition of the Infusion Pump. There is an eight pin

ribbon cable between the pump and CARA. Eight of the terminators in this level

correspond to the pins of the ribbon cable -- only 5 of which actually interact with CARA

(pin3_pump_speed_voltage, pin4_back_EMF, pin5_AirOK, pin7_OccOK, and

pin8_impedance_signal) (see Figure 106). The requirements also describe the need for

continuity checking of all the pins via a hardware interlock -- this is modeled as an

additional terminator (continuity_interlock).

Figure 106 Infusion_Pump Pin-outs v2

 318

3. Parent Vertex: CARA
This level shows the three main modules of the design: a Pump_Control_Module

with a main function of resolving the blood pressure to use and determining the

appropriate flow rate for the pump, an IO_Module with a main function of sending and

receiving inputs to the CARA operator via the display, and the Management_Module

with main functions of monitoring the status of the pump, the lines, and the system and

for logging data into the historical resuscitation file (see Figure 107).

Figure 107 CARA System Modules v2

 319

4. Parent Vertex: Management_Module
Central to this module is a manual_mode_interlock that is the primary operator

responsible for returning the system to a manual mode in case of failure of any

component (see Figure 108). Feeding this operator is data from the line_monitor that

monitors the sensor readings from the pump and LSTAT. Also feeding the

manual_mode_interlock is a processor watchdog. This watchdog would be implemented

on a separate processor from the main processor handling the bulk of the operations and

is responsible for sensing any major processor failure and then alerting the operator (via

the display). One final element of the Management_Module is the resuscitation_file

where all information about the changing state of the CARA system is recorded.

Figure 108 Management_Module v2

 320

5. Parent Vertex: Pump_Control_Module
This is the major safety critical module of the CARA. It is responsible for

resolving what blood pressure to use and for determining the correct input to the pump

when the system is in auto-control mode. Because of the safety critical nature of this

module, we chose to implement this with Triple Modular Redundancy (TMR) (see Figure

109). This specific safety architecture was not called for explicitly in the requirement

statement; however, the safety environment implicitly requires some form of redundancy

to ensure that the proper commands are sent to the pump. The TMR architecture uses

three concurrent modules performing similar functions and producing similar output, but

using different internal algorithms in their calculations. A voting element is then

responsible for determining which output to use. Module1 is the only module of the three

that has been fully decomposed. Modules2 & 3 could be decomposed similarly to

Module1 but would use different algorithms (inserted at the programming stage).

Figure 109 Pump_Control_Module v2

 321

6. Parent Vertex: IO_Module
This module handles the input and output to the CARA display for the benefit of

the CARA operator. Note that unlike version 1 (Figure 101), in this version the CARA

display has been modeled as a decomposable terminator within this module (see Figure

110). The alarm functions have been separated from other display functions to help

isolate the safety critical functions. Also note the duplicate alarm_controller1. This

additional alarm_controller would be implemented on the second processor with the

processor_watchdog so that in case of processor failure, alarms would be raised to the

display.

Figure 110 IO_Module v2

 322

7. Parent Vertex: Line_Monitor
This module (inside the Management_Module) handles and monitors the sensor

readings coming from the pump (see Figure 111). In case of any problem readings, a

line_fault is generated which is immediately sent to the manual_mode_interlock (see

Figure 108). Determining the proper value of impedance, air_disrupted, and back_EMF

readings requires further decomposition of these operators.

Figure 111 Line_Monitor v2

 323

8. Parent Vertex: Resuscitation_File
This module consists of a series of operators that accept data of a particular type

and convert it into data_for_file format. The resuscitation_file itself is modeled as a

looping data stream created by the Resuscitation_file_Generator where new additional

entries are appended onto the end of the file (see Figure 112 below).

Figure 112 Resuscitation_File v2

 324

9. Parent Vertex: Module1
This parent operator is decomposed into two main functions: first, a blood

pressure calculator (BP_calculator) responsible for determining which blood pressure to

use during further calculations, and second, a Pump_Speed_Calculator which determines

the appropriate pump command to issue (see Figure 113). Recall that there are two other

concurrent modules (Module2 & 3) (Figure 109) that are performing similar tasks but are

utilizing different computing algorithms.

Figure 113 Module1 v2

 325

10. Parent Vertex: Voting_Element
This operator is decomposed into two main sub-operators (see Figure 114). First,

the Vote operator compares the inputs from Module1, 2, 3. If the all the data are with a

set tolerance of each other, the operator averages the values and outputs the real_bp (for

the display and the resuscitation_file) and the pump_speed. If two of the inputs are

within tolerance and one is outside tolerance, it disregards the value outside tolerance,

averages the other two and outputs the average. If all three values are outside tolerance,

the Vote operator disregards all three values and waits for satisfactory data. The

Terminate_Autocontrol operator is responsible for returning the system to manual control

if the manual_mode_interlock_command is invoked.

Figure 114 Voting_Element v2

 326

11. Parent Vertex: Alarm_Controller1
This operator accepts alarm generating data streams and outputs alarm data (both

text and audio alarm) to the CARA display(see Figure 115 below). A second controller

(alarm_controller2 recall Figure 104) is implemented on the second processor to enable

alarm data to be transmitted to the display in the case of processor failure.

Figure 115 Alarm_Controller1 v2

 327

12. Parent Vertex: Display_Driver
This module contains a series of operators that act as drivers for the information

displayed on the CARA display (see Figure 116). Some of these operators (the graph

operators in particular) maintain aggregate data to send to the display. Also several of the

operators function by comparing any new data to old data and only update the display in

the case of changes.

Figure 116 Display_Driver v2

 328

13. Parent Vertex: Display
This module is a decomposed terminator that simulates the functions of the

CARA Display. Each terminator represents separate sets of data that can be displayed on

the Display (see Figure 117). This module also simulates user input in the way of

operator_commands (button pushes) from the Display.

Figure 117 Display v2

 329

14. Parent Vertex: AirOK_Monitor
This operator is decomposed in order to allow a timer to function. If the

Start_Air_Timer receives input that there is air disruption, then it waits the allotted time

to see if air becomes OK. If it does not, then the Generate_Air_fault fires indicating a

line_fault. If the Start_Air_Timer does receive good data, then the timer is reset and the

fault generator does not fire (see Figure 118 below).

Figure 118 AirOK_Monitor v2

 330

15. Parent Vertex: EMF_calculator
Two major functions are modeled in this module (see Figure 119). First, EMF

polling (Start_EMF_Polling) takes place so that appropriate back_EMF values can be

accumulated to calculate both the infuse rate and the total volume infused

(Calculate_Infused_Volume). These values are later sent to the display and the

resuscitation_file (recall Figure 108 and Figure 111). Secondly, if the back_EMF values

are unacceptable (absent or out of tolerance), the module waits the appropriate time for

acceptable data and then generates a line_fault that eventually sets the system back into

manual mode.

Figure 119 EMF_Calculator v2

 331

16. Parent Vertex: Impedance_Monitor
Much like the EMF_Calculator, two major functions are modeled in this module

(see Figure 120). First, impedance polling takes place (Start_Impedance_Polling) so that

appropriate impedance values can be accumulated to send to the resuscitation_file.

Secondly, if the impedance values are unacceptable (absent or out of tolerance --

Low_or_No_Impedance), the module waits the appropriate time for acceptable data and

then generates a line_fault that eventually sets the system back into manual mode.

Figure 120 Impedance_Monitor v2

 332

17. Parent Vertex: BP_Calculator
This operator has been decomposed into three operators: first, the

Aline_Corroborator which attempts to generate a corroborated arterial line blood

pressure for future calculation; second, the Pulse_Wave_Corroborator which attempts to

generate a corroborated pulse wave blood pressure for future calculation; and finally, a

BP_Priority_Calculator which given the blood pressures available (arterial line, pulse

wave, and cuff) generates the blood pressure that will be used (corroborated_bp1) based

on a blood pressure priority scheme (see Figure 121).

Figure 121 BP_Calculator v2

 333

LIST OF REFERENCES

[AKAO90] Akao, Y., Quality Function Deployment: Integrating Customer

Requirements into Product Design, Tamagawa University, Japan
translated by Glenn H. Mazur and Japan Business Consultants, Ltd.,
Productivity Press, Cambridge, Mass, 1990.

[ANDE94] Anderson, K., Taylor, R., and Whitehead, J., “Chimera: Hypertext for

Heterogeneous Software Environments,” Proceedings of the European
Conference n Hypermedia Technology (ECHT ’94), Edinburgh, Scotland,
September 1994, pp. 94-107.

[ARCA95] Arcadia Consortium, The Collected Arcadia Papers, Volume 1: Software

Engineering Environment Infrastructure, 2nd Ed., 1995.

[BADR93] Badr, S., "A Model and Algorithms for a Software Evolution Control

System," Ph.D. Dissertation, Computer Science Department, Naval
Postgraduate School, Monterey, CA, December, 1993.

[BERG89] Berge, C., Hypergraphs: Combinatorics of Finite Sets, North-Holland,

1989.

[BERZ91] Berzins, V. and Luqi, Software Engineering with Abstractions, Addison-

Wesley, 1991.

[BETT90] Betts, M., "QFD Integrated with Software Engineering," Transactions of

the Second Symposium on Quality Function Deployment, Novi MI, 18-19
June 1990, pp. 442-459.

[BOEH95] Boehm, B., Madachy, R., and Selby, R., "Cost Models for Future Software

Life Cycle Processes: COCOMO 2.0," Annals of Software Engineering
Special Volume on Software process and Product Measurement, J.C.
Baltzer AG, Science Publishers, Amsterdam, 1995.

[BORI86] Borison, E., "A Model of Software Manufacture," Advanced

Programming Environments: Proceedings of an International Workshop,
Eds. R. Conradi, T. M. Didriksen, and D. H. Wanvik, Trondheim Norway,
June 1986, pp. 197-220.

[BOUD88] Boudier, G., Gallo, F., Minot, R., and Thomas, I., "An Overview of PCTE

and PCTE+," Proceedings of the 3rd ACM SIGSOFT/SIGPLAN Software
Engineering Symposium on Practical Software Development
Environments (SESPSDE), 1988.

 334

[BROW92] Brown, A.W. and McDermid, J.A., "Learning from IPSE's Mistakes,"

IEEE Software, Vol 9, Issue: 2, March 1992, pp. 23 -28.

[BROW93] Brown, A.W., "An Examination of the current state of IPSE Technology,"

Proceedings of the 15th International Conference on Software
Engineering, 17-21 May 1993, pp. 338-347.

[CAMP63] Campbell, D. T. and Stanley, J. C., Experimental and Quasi-Experimental

Designs for Research, Houghton Mifflin Company, Boston, 1963.

[COHE95] Cohen, L., Quality Function Deployment: How to Make QFD Work for

You, Addison-Wesley, 1995.

[CLAU88] Clausing, D., "Quality Function Deployment," in Ryan, N. E., ed.,

Taguchi Methods and QFD, American Supplier Institute Inc., Dearborn,
MI, 1988.

[CLOM03] Clomera, A., " Extending the Computer-Aided Software Evolution System

(CASES) with Quality Function Deployment (QFD)" Masters Thesis,
Computer Science Department, Naval Postgraduate School, Monterey,
CA, June 2003

[CORM91] Cormen, T., Leiserson, C., and Rivest, R., Introduction to Algorithms, 4th

Printing, MIT Press, 1991.

[CRAN99] Cranefield, S. and Purvis, M., "UML as an Ontology Modelling

Language", Proceedings of the IJCAI'99 Workshop on Intelligent
Information Integration, Sweden, 1999.

[CRAN01] Cranefield, S., Haustein, S., and Purvis, M,. "UML-Based Ontology

Modelling for Software Agents," Proceedings of Ontologies in Agent
Systems Workshop, Agents 2001, Montreal, Canada, 2001.

[CZAR00] Czarnecki, K. and Eisenecker, U., Generative Programming Methods,

Tools, and Applications, Addison-Wesley, 2000.

[DAML03] “DARPA Agent Markup Language”, http://www.daml.org/, 3 March

2003.

[DEAN92] Dean, E. B., "Quality Function Deployment for Large Systems",

Proceedings of the 1992 International Engineering Management
Conference, Eatontown, NJ, USA, 25-28 October 1992.

 335

[DEVO00] Devore, J. L., Probability and Statistics for Engineering and the Sciences,
5th Edition, Duxbury--Brooks/Cole, 2000.

[FITZ03] Fitzgerald, B., Russo, N., and O’Kane, T., “Software Development

Method Tailoring at Motorola,” Communications of the ACM, Vol. 46,
No. 4, April 2003, pp. 65-70.

[GANG00] Ganguly, P. and Ray, P.., “Software Interoperability of Telemedicine

Systems: A CSCW Perspective,”, Proceedings of 7th International
Conference on Parallel and Distributed Systems, 2000, pp. 349-356.

[GAOT98] General Accounting Office Testimony: Dillingham, G. L., “Air Traffic

Control: Evolution and Status of FAA’s Automation Program,” GAO/T-
RCED/AIMD-98-85, 5 March 1998.

[GEYE00] Geyer, L., “Feature Modeling Using Design Spaces,” Proceedings of 1st

German Workshop on Product Line Software Engineering, Kaiserslautern,
Germany, November 2000.

[GRUB95] Gruber, T. R., “Toward Principles for the Design of Ontologies Used for

Knowledge Sharing,” International. Journal of Human-Computer Studies,
Vol. 43, 1995, pp. 907-928.

[GRUN95] Grüninger, M., and Fox, M.S., "Methodology for the Design and

Evaluation of Ontologies", Proceedings of the Workshop on Basic
Ontological Issues in Knowledge Sharing, IJCAI-95, Montreal, 13 April
1995.

[HAAG96] Haag, S., Raja, M. K., and Schkade, L. L., "Quality Function Deployment

Usage in Software Development," Communications of the ACM, Vol. 39,
No. 1, 1996, pp. 41-49.

[HARN99a] Harn, M., Berzins, V., Luqi, and Kemple, W., "Evolution of C4I

Systems," Proceedings of 1999 Command and Control Research and
Technology Symposium, United States Naval War College, Newport,
Rhode Island, June 29 - July 1, 1999, pp.1361-1380.

[HARN99b] Harn, M., Berzins, V., and Luqi, "Software Evolution Process via a

Relational Hypergraph Model," Proceedings of IEEE/IEEJ/JSAI
International Conference on Intelligent Transportation Systems, Tokyo,
Japan, October 5-8, 1999, pp. 599-604.

[HARN99c] Harn, M., "Computer-Aided Software Evolution Based on Inferred

Dependencies" Ph.D. Dissertation, Computer Science Department, Naval
Postgraduate School, Monterey, CA, 1999.

 336

[HASN03] Hasni, N., "Computer-Aided Software Evolution Based on Inferred

Dependencies" Masters Thesis, Computer Science Department, Naval
Postgraduate School, Monterey, CA, March 2003.

[HAUS88] Hauser, J. R. and Clausing, D., "The House of Quality," The Harvard

Business Review, May-June 1988, No. 3, pp 63-73.

[HEIM92] Heimbigner, D, "Experiences With an Object Manager for a Process-

Centered Environment," Proceedings of the 18th Very Large Data Bases
Conference (VLDB92), Vancouver, British Columbia, Canada, 1992.

[HRON93] Hrones, J. A. Jr., Jedrey, B. C. Jr., and Zaaf, D., "Defining Global

Requirements with Distributed QFD," Digital Technical Journal, Vol. 5,
No. 4, Fall 1993, pp. 36-46.

[IBRA96] Ibrahim, O. M., "A Model and Decision Support Mechanism for Software

Requirements Engineering," Ph.D. Dissertation, Computer Science
Department, Naval Postgraduate School, Monterey, CA, 1996.

[KADI92a] Kadia, R., "Lessons from the Arcadia Project", Proceedings of the

Software Technology Conference, Los Angeles, CA, April 28-30, 1992.

[KADI92b] Kadia, R., "Issues Encountered in Building a Flexible Software

Development Environment: Lessons from the Arcadia Project",
Proceedings of the 5th ACM SIGSOFT Symposium on Software
Development Environments, Tyson's Corner, VA, 1992, pp. 169-180.

[KOGU02] Kogut, P., Cranefield, S., Hart, L., Dutra, M., Baclawski, K., Kokar, M.,

and Smith, J., "UML for Ontology development," Knowledge Engineering
Review, Vol. 17, Issue 1, March 2002, pp. 61-64.

[KRUC96] Kruchten, P., "A Rational Development Process," CrossTalk, 9(7), July

1996, STSC, Hill AFB, UT, pp. 11-16.

[KUNZ70] Kunz, W., Rittel, H. W. J., “Issues as Elements of Information Systems,”

Working Paper 0131, Institut für Grundlagen der Planung: Universität
Stuttgart, 1970.

[LAMI95] Lamia, W. M., "Integrating QFD with Object Oriented Software Design

Methodologies," Transactions from the Seventh Symposium on Quality
Function Deployment, Novi MI, 11-13 June 1995, pp. 417-434.

[LAWL03] Lawler, G., Guidelines for Updating Protégé XML Schemas, Internal

Naval Postgraduate White Paper, February 2003.

 337

[LEFF00] Leffingwell, D. and Widrig, D., Managing Software Requirements: A

Unified Approach, Addison-Wesley, 2000.

[LEHC99] Le, H. C. T., " Design of a Persistence Server for the Relational

Hypergraph Model," Masters Thesis, Naval Postgraduate School,
December 1999.

[LEHM69] Lehman, M., "The Programming Process," IBM Research Report RC

2722, IBM Research Center, Yorktown Heights, NY, September1969.

[LEHM87] Lehman, M.M. and Turski, W.M., "Essential Properties of IPSEs,"

Software Engineering Notes, Vol. 12, Issue 1, 1987, pp. 52-55.

[LEHM91] Lehman, M., "Software Engineering, the Software Process and their

Support," Software Engineering Journal, Vol. 6, Issue 5, September 1991,
pp. 243-258.

[LEHM97] Lehman, M.M., Ramil, J.F., Wernick, P.D., Perry, D.E., and Turski,

W.M., "Metrics and Laws of Software Evolution -- The Nineties View,"
Proceedings of the 4th International Software Metrics Symposium, 5-7
November 1997, pp. 20-32.

[LEHM98] Lehman, M., "Software's Future: Managing Evolution," IEEE Software,

Vol. 15, Issue 1, January/February 1998, pp. 40-44.

[LEHM00] Lehman, M.M., and Ramil, J.F., "Towards a Theory of Software

Evolution -- And its Practical Impact," Proceedings of the International
Symposium on Principles of Software Evolution, 2000, pp. 2-11.

[LENC01] Lenci, A., “Building an Ontology for the Lexicon: Semantic Types and

Word Meaning,” in Jensen and Skadhauge (eds.), pp. 103-120, 2001,
http://www.ontoquery.dk/publications/docs/Building_an_Ontology.doc,
03/02/03.

[LIEN78] Lientz, B. P., Swanson, E. B., and Tompkins, G. E., "Characteristics of

Application Software Maintenance," Communications of the ACM, Vol.
21, No. 6, June 1978.

[LIUX00] Liu, X. F., "Software Quality Function Deployment," IEEE Potentials,

Vol. 19, Issue 5, December 2000/January 2001, pp. 14-16.

[LUQI88] Luqi and Ketabchi, M., “A Computer-Aided Prototyping System”, IEEE

Software, 5(2), pp. 66-72, 1988.

 338

[LUQI89] Luqi, "Software Evolution Through Rapid Prototyping," IEEE Computer,
Vol. 22, Issue 5, May 1989, pp. 13-25.

[LUQI90] Luqi, "A Graph Model for Software Evolution," IEEE Trans. on Software

Engineering, Vol. 16, No. 8, August 1990, pp. 917-927.

[LUQI91a] Luqi, “Computer-Aided Software Prototyping”, IEEE Computer, pp. 111-

112, September 1991.

[LUQI91b] Luqi, Steigerwald, R., Hughes, G., and Berzins, V., “CAPS as a

Requirement Engineering Tool,” Proceeding of Requirements Engineering
and Analysis Workshop, Software Engineering Institute, Carneige Mellon
University, Pittsburgh, PA, March 12-14, 1991, pp. 1-8.

[LUQI96] Luqi, “System Engineering and Computer-Aided Prototyping”, Journal of

Systems Integration - Special Issue on Computer Aided Prototyping, vol.
6, No. 1, pp. 15-17, 1996.

[LUQI02] Luqi, Shing, M., Berzins, V., Puett, J., et. al. “Computer Aided

Prototyping for the Infusion Pump Computer Assisted Resuscitation
Algorithm (CARA) Software,” Naval Postgraduate School Technical
Report NPS-SW-02-004, 2002.

[LUQI03] Luqi, Shing, M., Puett, J., Berzins, v., et. al. “Comparative Rapid

Prototyping, A Case Study,” Proceedings of the 14th IEEE International
Workshop on Rapid Systems Prototyping, San Diego, California, June
2003.

[MCBR02] McBreen, P., Software Craftsmanship: The New Imperative, Addison-

Wesley, 2002.

[MEYE97] Meyer, B., Object-Oriented Software Construction, 2nd Ed., Prentice Hall

PTR, 1997.

[MUSE98] Musen, M.A., "Domain Ontologies in Software Engineering: Use of

Protégé with the EON Architecture," Methods of Information in Medicine,
Vol. 37, No. 4-5, 1998, pp. 540-550.

[NOYN01] Noy, N.F. and McGuinnes, D. L., "Ontology Development 101: A Guide

to Creating Your First Ontology," Stanford Knowledge Systems
Laboratory Technical Report KSL-01-05 and Stanford Medical
Informatics Technical Report SMI-2001-0880, March 2001.

[PARI83] Parikh, G. and Zvegintzov, N., Tutorial on Software Maintenance, IEEE

Computer Society Press, 1983.

 339

[PITO97] Pitoura, E., “Providing Database Interoperability through Object-Oriented

Language Constructs”, Journal of Systems Integration, Volume 7, No. 2,
August 1997, pp. 99-126.

[PRES01] Pressman, R., Software Engineering: A Practitioner's Approach, 5th Ed.,

McGraw Hill, Boston, 2001.

[PROT03a] Protégé Project Homepage, http://protege.stanford.edu/index.html, 2

March 2003.

[PROT03b] Protégé-2000 User's Guide, http://protege.stanford.edu/publications/
UserGuide.pdf, 2 March 2003.

[PUET02a] Puett, J., “Holistic Framework for Establishing Interoperability of
Heterogeneous Software Development Tools and Models,” Proceedings of
the 24th International Conference on Software Engineering (ICSE02),
Orlando Florida, May 2002, pp 729-730.

[PUET02b] Puett, J., “Holistic Framework for Establishing Interoperability of
Heterogeneous Software Development Tools and Models,” Proceedings of
the ICSE-02 Doctoral Symposium, Orlando Florida, 21 May 2002.

[RATI98] Rational Software Corporation, Rational Unified Process: Best Practices
for Software Development Teams, TP-026A, rev. November 98.

[RATI01] Rational Software Corporation, Rational RequisitePro User’s Guide,

Version 2002.05.00, 2001.

[RATI03] Rational Software Corporation, "Rational Unified Process Homepage,"

http://www.rational.com/products/rup/prodinfo.jsp, 3 March 2003.

[ROSE02] Rational Rose® User’s Help, Release Version 2002.05.00, 2002.

[SAAT80] Saaty, T. L., The Analytic Hierarchy Process, McGraw-Hill, 1980.

[SHAR91] Sharkey, A. I., "Generalized Approach to Adapting QFD for Software,"

Transactions of the Third Symposium on Quality Function Deployment,
Novi MI, 24-25 June 1991, pp. 380-416.

[SOMM01] Sommerville, I., Software Engineering, 6th Edition, Addison-Wesley,

2001.

[SOWA00] Sowa, J. F., Knowledge Representation: Logical, Philosophical, and

Computational Foundations, Pacific Grove Brooks/Cole, 2000.

 340

[STAN00] STANAG 5048: The Minimum Scale of Connectivity for Communications
and Information Systems for NATO Land Forces, Edition 5, Promulgated
16 February 2000 by NC3B Sub-Committee AC/322 SC/1.

[STEV46] Stevens, S. S., “On the Theory of Scales of Measurement,” Science, New
Series, Vol. 103, No. 2684, 7 June 1946, pp. 677-680.

[STEV51] Stevens, S. S., “Mathematics, Measurement, and Psychophysics,” in
Handbook of Experimental Psychology, ed. S. S. Stevens, John Wiley,
New York, 1951.

[SUTT95] Sutton, S., Hiembigner, D., and Osterweil, L., “APPL/A: A Language for
Software-Process Programming,” in The Collected Arcadia Papers,
Volume 1: Software Engineering Environment Infrastructure, 2nd Ed.,
1995, pp. 91-132.

[SWEB01] Software Engineering Body of Knowledge, Stone man Version 0.9,

Executive Editors Alain Abran and James Moore, February 2001.

[TARR93] Tarr, P., and Clarke, L., "PLEIADES: An Object management System for

Software Engineering Environments," Proceeding on foundations of
Software Engineering, Los Angeles, California, 1993, pp. 56-70.

[TAYL94] Taylor, R. Nies, K, Bolcer, G. MacFarlane, C. Johnson, G. and Anderson,

K., "Supporting Separations of Concerns and Concurrency in the Chiron-1
User Interface System," 11 March 1994, in The Collected Arcadia Papers,
Volume 1: Software Engineering Environment Infrastructure, 2nd Ed.,
1995, pp. 19-68.

[THAC90] Thackery, R. and Van Treeck, G., "Applying Quality Function

Deployment for Software Product Development," Journal of Engineering
Design, Vol. 1, No. 4, 1990, pp. 389-410.

[TOGE03] TogetherSoft Homepage, http://www.togethersoft.com/, 5 March 2003.

[USCH96] Uschold, M. and Gruninger, M., "Ontologies: Principles, Methods and

Applications," Knowledge Engineering Review, Vol. 11, No. 2, June 1996.

[USCH98] Uschold, M., King, M., Moralee, S., and Zorgios, Y., "The Enterprise

Ontology," Knowledge Engineering Review, Vol 13, Issue 1, Cambridge
University Press, March 1998, pp. 31-89.

[VELL93] Velleman, P. F. and Wilkinson, L., "Nominal, Ordinal, Interval, and Ratio

Typologies are Misleading," The American Statistician, Vol. 47, No. 1,
February 1993, pp. 65-72.

 341

[WRAI01a] WRAIR Dept. of Resuscitative Medicine, Narrative Description of the
CARA software, Proprietary Document, WRAIR, Silver Spring, MD,
January 2001.

[WRAI01b] WRAIR Dept. of Resuscitative Medicine, CARA Pump Control Software

Questions, Version 6.1, Proprietary Document, WRAIR, Silver Spring,
MD, January 2001.

[WRAI01c] WRAIR Dept. of Resuscitative Medicine, CARA Tagged Requirements,

Increment 3, Version 1.2, Proprietary Document, WRAIR, Silver Spring,
MD, March 2001.

[YOUN01] Young, P., Ge Jun, Berzins, V., Luqi, "Using an Object Oriented Model

for Resolving Representational Differences between Heterogeneous
Systems," Proceedings of the Monterey Workshop 2001, June 2001.

[YOUN02a] Young, P., Berzins, V., Ge Jun, Luqi, "Using an Object Oriented Model

for Resolving Representational Differences between Heterogeneous
Systems," Proceedings of the ACM Symposium on Applied Computing
SAC2002, Madrid Spain, March 2002.

[YOUN02b] Young, P., "Heterogeneous Software System Interoperability Through

Computer-Aided Resolution Of Modeling Differences," PhD Dissertation,
Naval Postgraduate School, June 2002.

[ZULT90] Zultner, R. E., "Software Quality Deployment: Adapting QFD to

Software," Transactions of the Second Symposium on Quality Function
Deployment, Novi MI, 18-19 June 1990, pp. 132-149.

[ZULT92] Zultner, R. E., "Quality Function Deployment (QFD) for Software:

Structured Requirements Exploration," in Schulmeyer, G. G. and J. I.
McManus, ed., Total Quality Management for Software, Van Nostrand
Reinhold, New York NY, 1992.

 [ZULT93] Zultner, R. E., "TQM for Technical Teams," Communications of the ACM,

Vol. 36, No. 10, 1993, pp. 79-91.

 342

THIS PAGE INTENTIONALLY LEFT BLANK

 343

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library

Naval Postgraduate School
Monterey, California

3. Professor Luqi
Naval Postgraduate School
Monterey, California

4. Professor James B. Michael
Naval Postgraduate School
Monterey, California

5. Professor Craig W. Rasmussen
Naval Postgraduate School
Monterey, California

6. Professor Man-Tak Shing
Naval Postgraduate School
Monterey, California

7. Dr. Nelson Ludlow
Mobilisa, Incorporated
Port Townsend, Washington

8. Mr. Douglas Lange
Space and Naval Warfare Systems Center
San Diego, California

9. Dr. David Hislop

U.S. Army Research Office
Research Triangle Park, NC

10. Mr. Paul L. Jones
U.S. Food and Drug Administration
Rockville, Maryland

 344

11. Dr. Stephen A. Van Albert
Walter Reed Army Institute of Research
Washington D. C.

12. Dr. Frederick J. Pearce
Walter Reed Army Institute of Research
Washington D. C.

13. Professor Valdis Berzins

Naval Postgraduate School
Monterey, California

14. Professor Peter Denning
Naval Postgraduate School
Monterey, California

15. Professor David Floodeen

Naval Postgraduate School
Monterey, California

16. LCDR Christopher Williamson

HELLANTISUBRON EIGHT
Unit 25174, FPO/AP 96601-5709

17. CAPT Paul E. Young
U.S. Naval Academy
Annapolis, Maryland

18. LTC Joseph F. Puett III
Naval Postgraduate School
Monterey, California

